

Exhibit H: Preliminary Stormwater Report

Cipole Property Tualatin, Oregon

Preliminary Stormwater Report

Date:	March 10, 2023
Client:	Cipole, LLC 19990 SW Cipole Road Tualatin, Oregon 97062
Engineering Contact:	Paul Sellke, PE, GE (503) 563-6151 pauls@aks-eng.com
Prepared By:	Mariah Taylor, El
Engineering Firm:	AKS Engineering & Forestry, LLC 12965 SW Herman Road, Suite 100 Tualatin, OR 97062
AKS Job Number:	7949

www.aks-eng.com

Contents

1.0	Purpose of Report	2						
2.0	Project Location/Description2							
3.0	Regulatory Design Criteria	2						
3.1.	Stormwater Quantity	,						
3.2.	Stormwater Hydromodification	,						
3.3.	Stormwater Quality	3						
4.0	Design Methodology	\$						
5.0	Design Parameters	5						
5.1.	Design Storms	5						
5.2.	Pre-Developed Site Conditions	5						
5.	2.1. Site Topography	3						
5.	2.2. Land Use	3						
5.3.	Soil Type	3						
5.4.	Post-Developed Site Conditions	ŀ						
5.	4.1. Site Topography	ŀ						
5.	4.2. Land Use	ŀ						
5.	4.3. Post-Developed Site Parameters	ŀ						
5.	4.4. Description of Off-Site Contributing Basins	ŀ						
6.0	Stormwater Analyses	ł						
6.1.	.1. Proposed Stormwater Conduit Sizing and Inlet Spacing							
6.2.	2. Proposed Stormwater Quality Control Facility4							
6.3.	Stormwater Hydromodification Management	ŀ						
6.4.	Stormwater Quantity Control Facility Design	;						
6.5.	Downstream Analysis	Downstream Analysis						

Tables

Table 5-1: Rainfall Intensities	.3
Table 5-2: Hydrologic Soil Groupings	.4
Table 6-1: Pre- and Post-Developed Flows	. 5

Figures

Figure 1: Vicinity Map Figure 2: Pre-Developed Catchment Map Figure 3: Post-Developed Catchment Map Figure 4: Stormwater Extension Map

Appendices

Appendix A: HydroCAD Report Appendix B: Stormwater Quality Calculations Appendix C: NRCS Soil Resource Report Appendix D: Runoff Curve Numbers From TR-55

Preliminary Stormwater Report Cipole Property Tualatin, Oregon

1.0 Purpose of Report

The purpose of this report is to analyze the effects the proposed development will have on the existing and proposed stormwater conveyance system; document the criteria, methodology, and informational sources used to design the proposed stormwater system; and present the results of the final hydraulic analysis.

2.0 Project Location/Description

The subject site is located at 19990 SW Cipole Road and is a 1.44-acre plot of land in Tualatin, Oregon, Tax Lot 700 (Washington County Assessor's Map 2S121DC).

This development will include the creation of a commercial building, associated parking, landscaped areas, and utilities. Underground detention and treatment will be constructed to manage on-site stormwater runoff and meet quality and quantity requirements.

3.0 Regulatory Design Criteria

3.1. Stormwater Quantity

Per the 2019 Clean Water Services (CWS) *Design & Construction Standards* (R&O 19-5, as Amended by R&O 19-22) Section 4.02, Water Quantity Control Requirements for Conveyance Capacity, on-site detention for conveyance capacity of the 25-year storm event is required when any of the following conditions exist:

- 1. There is an identified downstream deficiency and the District or City determines that detention rather than conveyance system enlargement is the more effective solution.
- 2. There is an identified regional detention site within the boundary of the development.
- 3. Water quantity facilities are required by District-adopted watershed management plans or adopted subbasin master plans.

The proposed project does not meet any of the conditions listed above; therefore, the project is not required to meet stormwater quantity requirements. However, the stormwater facility has been designed to meet CWS hydromodification requirements and results in the detention of flows from the post-developed site's 25-year storm event to the level of flows from the predeveloped site's 25-year storm event.

3.2. Stormwater Hydromodification

Per CWS *Design & Construction Standards* Section 4.03, Hydromodification Approach Requirements, stormwater hydromodification is required unless the project meets any of the following criteria:

- 1. The project results in the addition and/or modification of less than 12,000 square feet of impervious surface.
- 2. The project is located in an area with a District-approved subbasin strategy with an identified regional stormwater management approach for hydromodification.

Per listed criteria in CWS *Design & Construction Standards* Table 4-2, Hydromodification Approach Project Category Table, the project is identified as Category 2. Therefore, the project will meet CWS hydromodification requirements by providing a combination of infiltration facility and peak flow-matching detention using the criteria established within CWS *Design & Construction Standards* Section 4.08.6.

3.3. Stormwater Quality

Stormwater quality management for this project will be provided by a proprietary mechanical treatment device. Proprietary treatment systems are an allowed use per CWS Section 4.04.3 and are designed to comply with CWS Section 4.07.8.

4.0 Design Methodology

The Santa Barbara Urban Hydrograph (SBUH) method was used to analyze stormwater runoff from the site. This method uses the Soil Conservation Service (SCS) Type 1A 24-hour design storm. HydroCAD 10.00.22 computer software aided in the analysis. Representative runoff curve numbers (CN) were obtained from the 1986 Natural Resources Conservation Service (NRCS) Technical Release 55 (TR-55), *Urban Hydrology for Small Watersheds*, and are included in Appendix D.

5.0 Design Parameters

5.1. Design Storms

Per CWS *Design & Construction Standards* Section 4.08.2, Storm Events Used in Design, the following rainfall intensities and durations were used in analyzing the proposed stormwater facility:

Table 5-1. Raintai Intensities									
Storm Period (hours)	Total Precipitation Depth (Inches)								
4	0.36								
24	2.50								
24	3.10								
24	3.45								
24	3.90								
	(hours) 4 24 24 24 24								

Table 5-1: Rainfall Intensities

* WQ recurrence interval refers to the water quality storm

5.2. Pre-Developed Site Conditions

5.2.1. Site Topography

Existing on-site grades generally vary from ± 0.7 to ± 5 percent, with a high point of elevation ± 144 feet located at the south property line and a low point of elevation ± 138 feet located at the northwest property corner. The site slopes from the south property line to a low point in the northwest corner of the site.

5.2.2. Land Use

The existing site consists of an undeveloped grass field.

5.3. Soil Type

The soil beneath the project site and associated drainage basins is classified as Hillsboro loam, according to the NRCS Soil Survey for Washington County. The following table outlines the Hydrologic Soil Group rating for each soil type:

Table 5-2: Hydrologic Soil Groupings

NRCS Map Unit Identification	NRCS Soil Classification	Hydrologic Soil Group Rating
21B	Hillsboro loam, 3 to 7	В
	percent slopes	

Further information on this soil type is included in the NRCS Soil Resource Report located in Appendix C of this report.

5.4. Post-Developed Site Conditions

5.4.1. Site Topography

The on-site slopes will be modified with minor cuts and fills to accommodate the construction of a building and a parking lot. The majority of the proposed site grading will not change the existing site topography.

5.4.2. Land Use

The site's land use will consist of general manufacturing industrial with the construction of a new industrial building, associated parking, and utilities.

5.4.3. Post-Developed Site Parameters

Appendix A provides the HydroCAD reports and input parameters that were generated for the analyzed storm events with respect to the drainage basins contributing to the subdivision. These reports include all parameters used to model site hydrology (e.g. impervious and pervious areas, time of concentration, etc.).

5.4.4. Description of Off-Site Contributing Basins

The existing lot to the south (Tax Lot 900 Washington County Assessor's Map 1S 1 21 DC) drains onto the subject site. This lot consists of multiple buildings, associated driveways, parking, and landscaping.

6.0 Stormwater Analyses

6.1. Proposed Stormwater Conduit Sizing and Inlet Spacing

To properly convey stormwater runoff, the proposed on-site catch basins have been spaced to properly convey stormwater runoff. The proposed storm pipes will be sized using Manning's equation to convey the peak flows of the 25-year storm event, meeting CWS *Design & Construction Standards* Section 5.06.1, Pipe Size.

6.2. Proposed Stormwater Quality Control Facility

A proprietary mechanical treatment device has been designed per CWS *Design & Construction Standards* Section 4.07.8 to provide water quality treatment for runoff from impervious areas created by the proposed project.

The water quality volume (WQV) will be routed through the proprietary mechanical treatment device, which will provide water quality treatment per CWS *Design & Construction Standards* Section 4.07.8. Detailed calculations and checks against CWS criteria are included in Appendix B.

6.3. Stormwater Hydromodification Management

The proposed project will generate approximately 50,879 square feet of impervious area and is therefore classified as a large project. Per the CWS online Hydromodification Planning Tool, the subject site is located within a developed area, and the site's runoff flows through a series of stormwater mains, outfalling to an existing wetland, through unnamed tributaries before discharging into the Tualatin River

with a low hydromodification risk level. Based on these parameters and CWS *Design & Construction Standards* Table 4-2, the project is classified as a Category 2 Hydromodification Approach.

Per the Category 2 requirements of CWS *Design & Construction Standards* Section 4.03.5, the subject site will provide a combination of infiltration facility and peak flow–matching detention, using design criteria listed in Sections 4.08.5 and 4.08.6 for the development of underground detention chambers and a proprietary mechanical treatment device. Specifically, flows from the subject site's post-developed 2-, 5-, and 10-year storm events will not exceed the site's flows from the predeveloped 50 percent of 2-, 5-, and 10-year storm events.

6.4. Stormwater Quantity Control Facility Design

The proposed project provides stormwater quantity management for the commercial development by using underground detention chambers designed per CWS and City of Tualatin standards. The following table outlines how the underground detention chamber's outflow will limit the site development's post-developed peak flows to less than the allowable pre-developed peak flows for each storm event and meet CWS requirements, as outlined in the Stormwater Quantity and Stormwater Hydromodification Management sections of this report.

Recurrence Interval (Years)	Peak Pre-Developed Flows (cubic feet per second)	Peak Post-Developed Flows (cubic feet per second)*	Peak Flow Increase or (Decrease) (cubic feet per second)
2	0.30 (50% of 2-year = 0.15)	0.14	(0.01)
5	0.37	0.34	(0.03)
10	0.47	0.45	(0.02)
25	0.64	0.59	(0.05)

Table	6-1:	Pre-	and	Post-De	velop	oed F	lows
	•						

* Peak post-developed flow for 2-year storm event is less than or equal to 50 percent of 2-year peak predeveloped flow

The proposed underground stormwater chambers have sufficient capacity to detain the commercial development's post-developed flows to the level of pre-developed flows, meeting the requirements established by the CWS *Design & Construction Standards*.

6.5. Downstream Analysis

Per CWS standards and City of Tualatin requirements, a downstream analysis of the existing stormwater system has been performed and no downstream deficiencies have been identified. Since the proposed development will provide stormwater detention up to the 25-year storm event, only a visual investigation of the downstream system is required.

Historically, the proposed site drains to the northwest corner of the site before draining through a series of storm utilities and unnamed tributaries before ultimately ending up in the Tualatin River.

A visual investigation has been performed of the downstream system to a distance of ¼ mile from the site. The investigation determined that there are no observable downstream obstructions or failures in the drainage system.

Figure 1: Vicinity Map

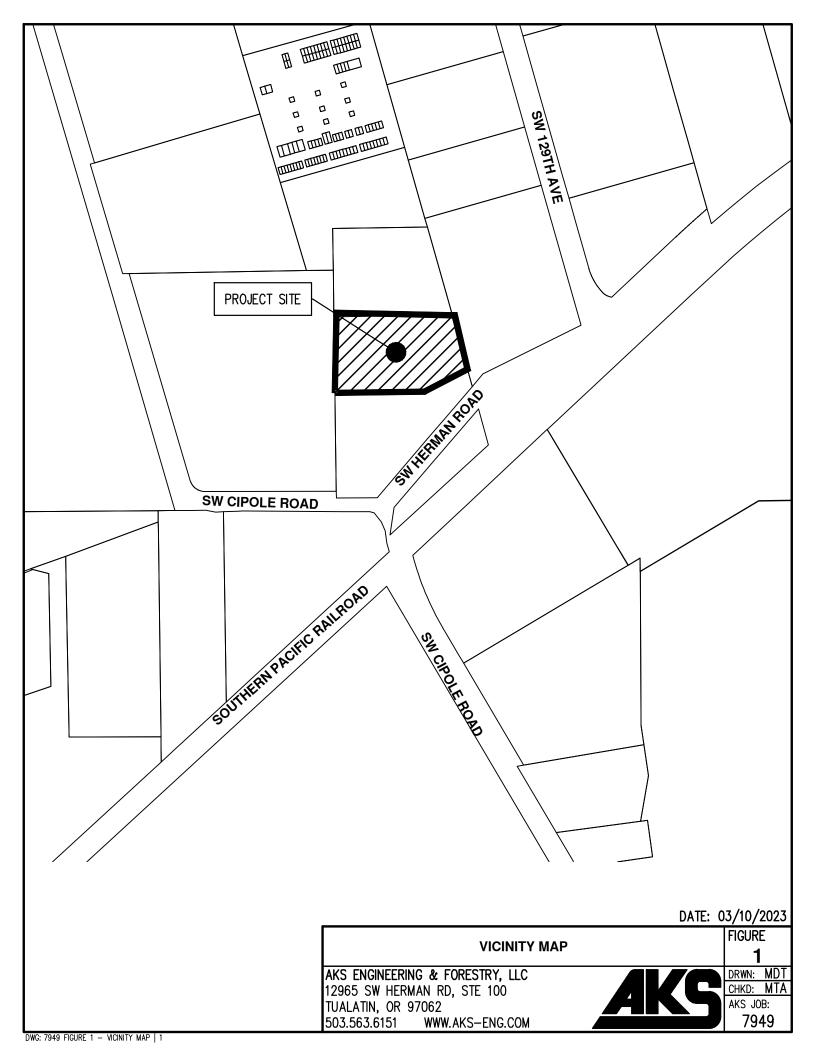


Figure 2: Pre-Developed Catchment Map

(c; 7949 FIGURE 2 - PRE-DEVELOPED | 2

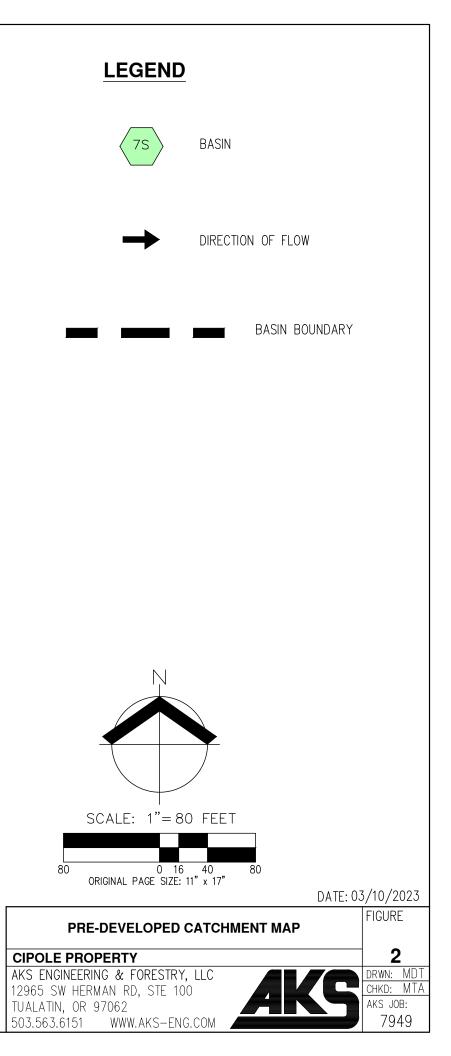
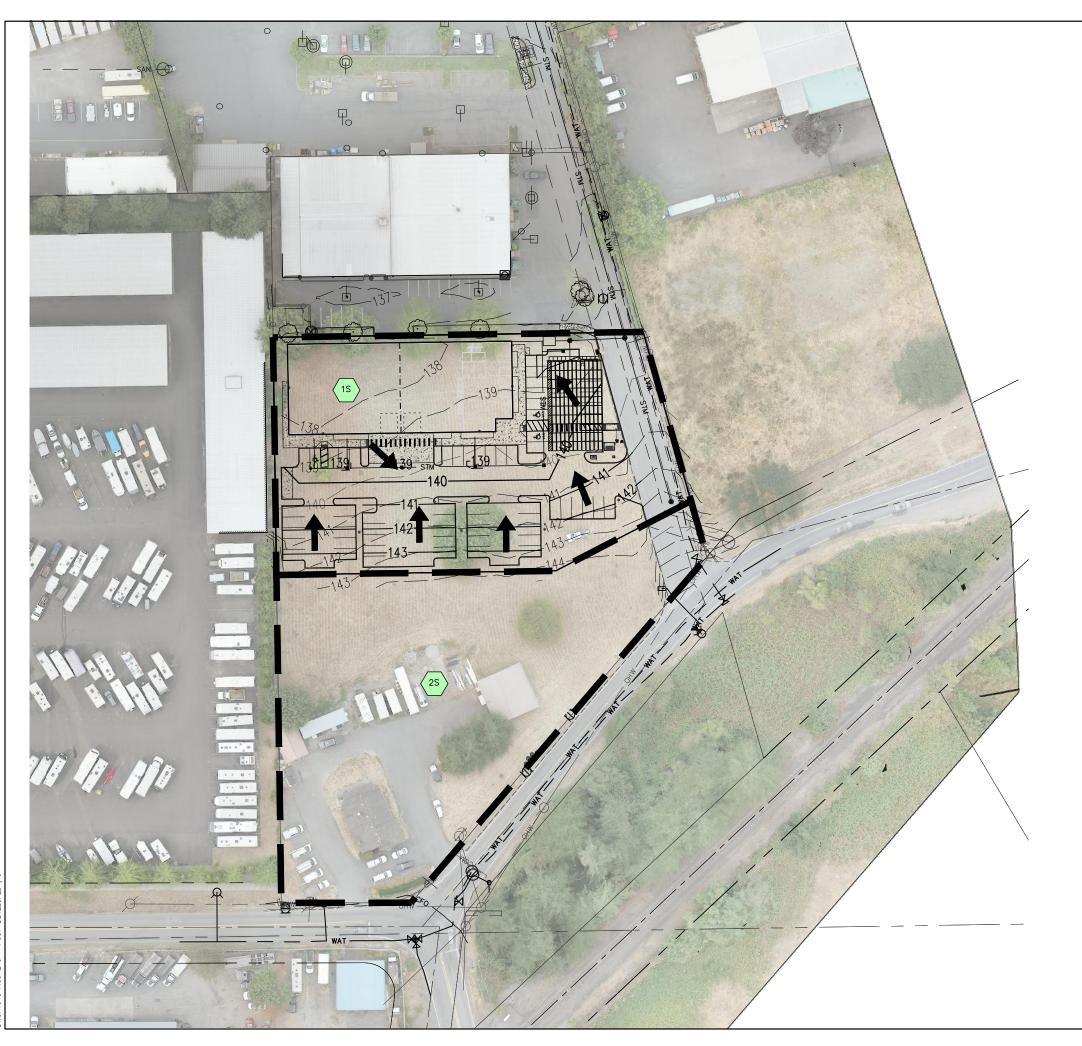
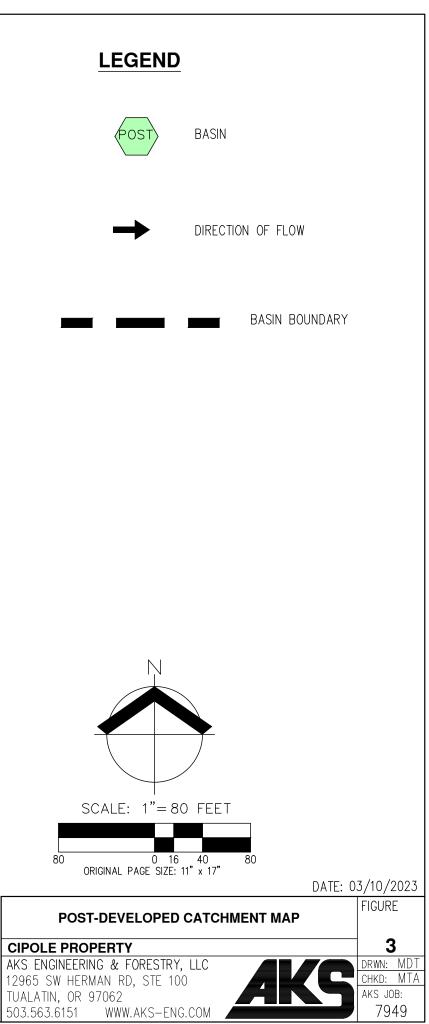
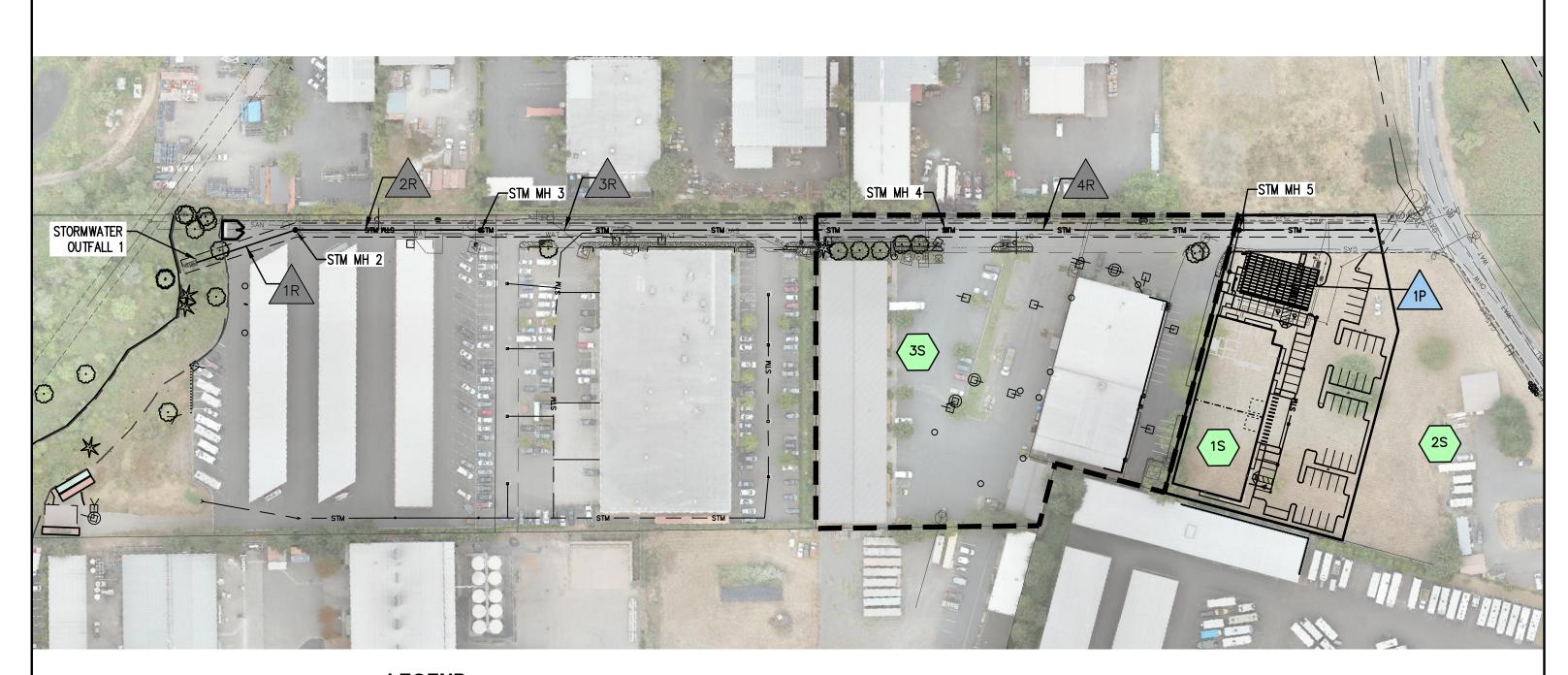
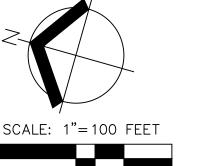



Figure 3: Post-Developed Catchment Map

-DEVELOPED OST-FIGURE 7949


Figure 4: Stormwater Extension Map

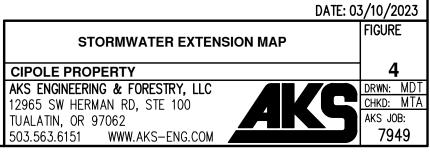
100

LEGEND

100

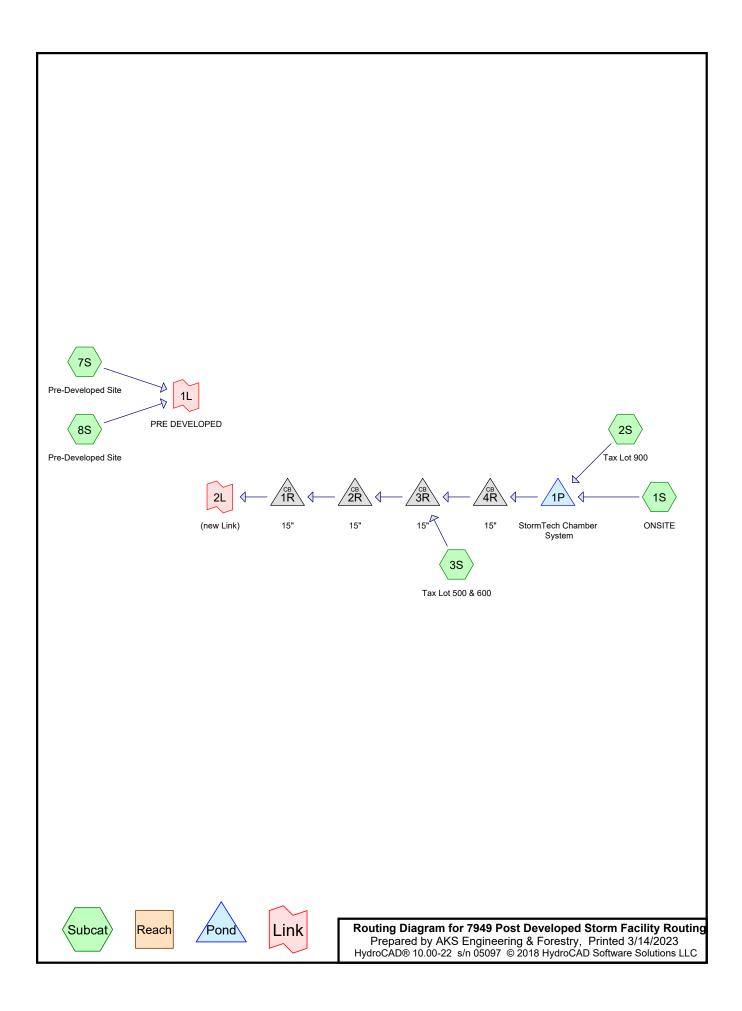
0 20 50 ORIGINAL PAGE SIZE: 11" x 17"

/ 1P



REACH

STORMWATER FACILITY


BASIN

BASIN BOUNDARY

Appendix A: HydroCAD Report

Area Listing (selected nodes)

Area	CN	Description		
(acres)		(subcatchment-numbers)		
1.553	61	>75% Grass cover, Good, HSG B (1S, 2S, 3S)		
1.870	98	AC Parking Lot (3S)		
0.964	98	Building (3S)		
1.168	98	IMPERVIOUS (1S)		
0.403	98	Impervious (2S)		
0.527	98	impervious (7S, 8S)		
2.437	61	pervious (7S, 8S)		
1.553 1.870 0.964 1.168 0.403 0.527	98 98 98 98 98 98	>75% Grass cover, Good, HSG B (1S, 2S, 3 AC Parking Lot (3S) Building (3S) IMPERVIOUS (1S) Impervious (2S) impervious (7S, 8S)		

Summary for Subcatchment 1S: ONSITE

Runoff = 0.67 cfs @ 7.88 hrs, Volume= 0.225 af, Depth> 1.88"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 2-YR Rainfall=2.50"

	Area (sf)	CN Description							
*	50,879	98 IMPERVIOUS							
	11,787 61 >75% Grass cover, Good, HSG B								
	62,666	91 Weighted Average 18.81% Pervious Area							
	11,787 50,879	81.19% Impervious Area							
	50,075								
	Tc Length		ription						
(r	nin) (feet)	(ft/ft) (ft/sec) (cfs)							
	5.0	Direc	t Entry,						
		Subcatchmen							
			LIS. UNSITE						
		Hydrograph	++						
	0.75	· · · · · · · · · · · · · · · · · · ·							
	0.7								
	0.65		Type IA 24-hr						
	0.6		2-YR Rainfall=2.50"						
	0.55		Runoff-Area=62,666-sf						
	0.5								
	0.45		Runoff Volume=0.225 af						
Flow (cfs)	0.4		Runoff Depth>1.88"						
<u> 0</u>	0.35		Tc=5.0 min						
_	0.3		CN=61/98						
	0.25								
	0.2								
	0.15								
	0.1								
	0.05								
	0	<u> </u>	14 15 16 17 18 19 20 21 22 23 24						
	0 1 2	3 4 5 6 7 8 9 10 11 12 13 Time (hours							

0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

0 1 2

5

4

6 7

ż

8 9 10

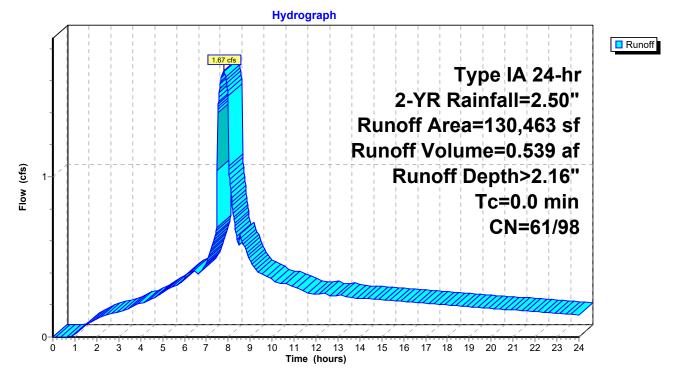
Summary for Subcatchment 2S: Tax Lot 900

Runoff = 0.23 cfs @ 7.88 hrs, Volume= 0.094 af, Depth> 0.74"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 2-YR Rainfall=2.50"

	A	rea (sf)	CN E	Description							
*		17,573	98 li	Impervious							
		48,878	61 >	75% Gras	s cover, Go	ood, HSG B					
		66,451		Veighted A							
		48,878			vious Area						
		17,573	2	6.45% Imp	pervious Ar	ea					
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	5.0	· · · · ·	· /	· · · /	· · · ·	Direct Entr	у,				
				Si	ubcatchn	nent 2S: Ta	ax Lot 9	900			
					Hydro	graph					
	0.26										Runoff
	0.25 0.24	■´/+ <u> -</u>	, , , , , , , //	· _ L L _ <mark>0.23 c</mark>							
	0.23- 0.22-		1 - - - - - + - J			- r ı ı	- + + - 1 1	Туре	e IA 24	-hr	
	0.21			·			2-YR	Rainf	all=2.5	50"	
	0.19		 				unoff	Δrea=	66 451	ef	
	0.19 0.18 0.17										
0.16 0.16 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.14 0.15 0.14 0.14 0.15 0.14											
							'4''				
	0.13 0.12	//)				- T T - 4 4	 	:=5.0 n	nin	
	-0.11 ۳ -0.1	- / `	1 -			- r	- $+$ $ +$ $ +$ $ -$		- T T F		
	0.09				+ +		- + +		CN=61	30	

11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours)

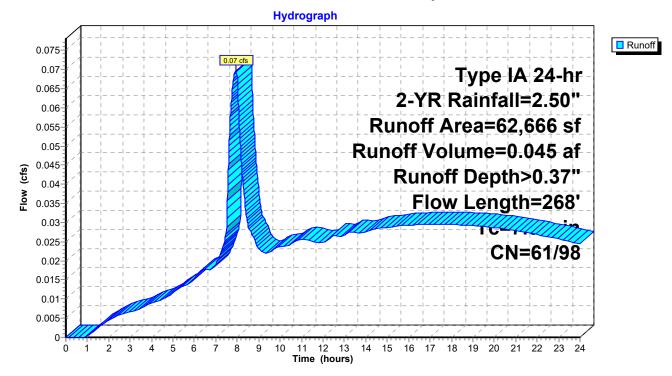

Summary for Subcatchment 3S: Tax Lot 500 & 600

Runoff = 1.67 cfs @ 7.79 hrs, Volume= 0.539 af, Depth> 2.16"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 2-YR Rainfall=2.50"

	Area (sf)	CN	Description			
*	81,458	98	AC Parking Lot			
*	42,005	98	Building			
	7,000	61	>75% Grass cover, Good, HSG B			
130,463 96 Weighted Average			Weighted Average			
7,000 5.37% Pervious Area			5.37% Pervious Area			
	123,463		94.63% Impervious Area			

Subcatchment 3S: Tax Lot 500 & 600


Summary for Subcatchment 7S: Pre-Developed Site

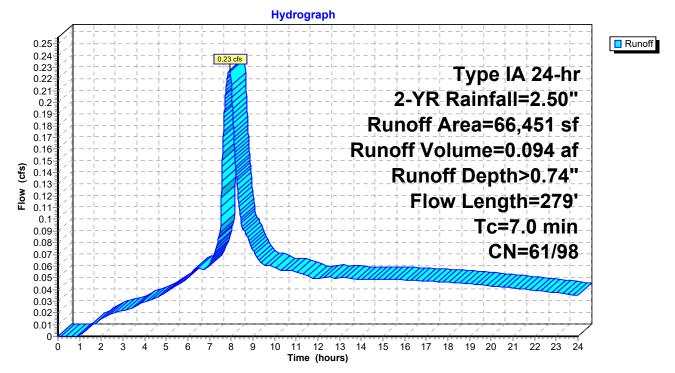
Runoff = 0.07 cfs @ 7.93 hrs, Volume= 0.045 af, Depth> 0.37"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 2-YR Rainfall=2.50"

	A	rea (sf)	CN	Description		
*		57,266	61	pervious		
*		5,400	98	mpervious		
		62,666	64	Weighted A	verage	
		57,266	1	91.38% Pei	rvious Area	
		5,400		8.62% Impe	ervious Area	а
	_				_	
	Tc	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.7	50	0.0450	0.23		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
	3.8	218	0.0190	0.96		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	7.5	268	Total			

Subcatchment 7S: Pre-Developed Site

Summary for Subcatchment 8S: Pre-Developed Site


Runoff = 0.23 cfs @ 7.92 hrs, Volume= 0.094 af, Depth> 0.74"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 2-YR Rainfall=2.50"

	A	rea (sf)	CN E	Description		
*		48,882	61 p	ervious		
*		17,569	98 i	mpervious		
		66,451	71 V	Veighted A	verage	
		48,882	7	'3.56% Pei	rvious Area	
		17,569	2	26.44% Imp	pervious Ar	ea
	_					
	Tc	Length	Slope	•	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.8	50	0.0230	0.17		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
	1.7	160	0.0530	1.61		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.0	11	0.4940	4.92		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.5	58	0.0900	2.10		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps

7.0 279 Total

Subcatchment 8S: Pre-Developed Site

Summary for Pond 1P: StormTech Chamber System

Inflow Area =	2.964 ac, 53.02% Impervious, Inflow De	epth > 1.29" for 2-YR event
Inflow =	0.91 cfs @ 7.88 hrs, Volume=	0.319 af
Outflow =	0.18 cfs @ 11.22 hrs, Volume=	0.274 af, Atten= 80%, Lag= 200.6 min
Discarded =	0.05 cfs @ 2.94 hrs, Volume=	0.085 af
Primary =	0.14 cfs @ 11.22 hrs, Volume=	0.190 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 133.75' @ 11.22 hrs Surf.Area= 3,241 sf Storage= 3,625 cf Flood Elev= 139.00' Surf.Area= 3,241 sf Storage= 5,435 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 139.8 min (837.6 - 697.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	131.75'	3,578 cf	48.17'W x 67.28'L x 3.33'H Field A
			10,802 cf Overall - 1,857 cf Embedded = 8,945 cf x 40.0% Voids
#2A	132.75'	1,857 cf	ADS_StormTech SC-310 +Cap x 126 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			14 Rows of 9 Chambers
		5,435 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	137.00'	4.0' long (Profile 17) MH Wier
			Head (feet) 0.49 0.98 1.48 1.97 2.46 2.95
			Coef. (English) 2.84 3.13 3.26 3.30 3.31 3.31
#2	Primary	131.75'	10.0" Round Culvert L= 7.0' Ke= 0.500
			Inlet / Outlet Invert= 131.75' / 131.71' S= 0.0057 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.55 sf
#3	Device 2	131.75'	1.9" Vert. Detention Orifice C= 0.620
#4	Device 2	133.85'	4.0" Vert. Orifice C= 0.600
#5	Discarded	131.75'	0.600 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.05 cfs @ 2.94 hrs HW=131.82' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.14 cfs @ 11.22 hrs HW=133.75' TW=130.37' (Dynamic Tailwater) 2=Culvert (Passes 0.14 cfs of 3.30 cfs potential flow) 1=MH Wier (Controls 0.00 cfs)

-3=Detention Orifice (Orifice Controls 0.14 cfs @ 6.89 fps)

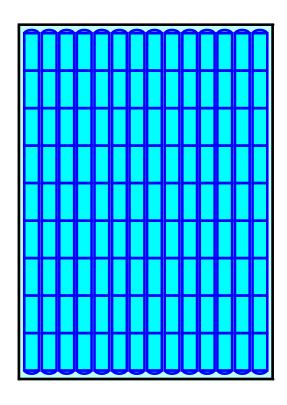
-4=Orifice (Controls 0.00 cfs)

Pond 1P: StormTech Chamber System - Chamber Wizard Field A

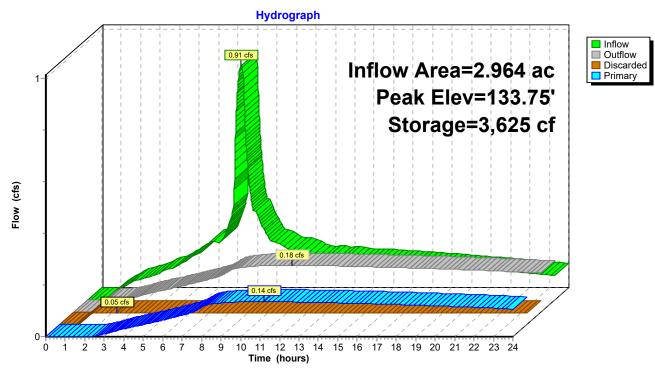
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

9 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 65.28' Row Length +12.0" End Stone x 2 = 67.28' Base Length 14 Rows x 34.0" Wide + 6.0" Spacing x 13 + 12.0" Side Stone x 2 = 48.17' Base Width


12.0" Base + 16.0" Chamber Height + 12.0" Cover = 3.33' Field Height

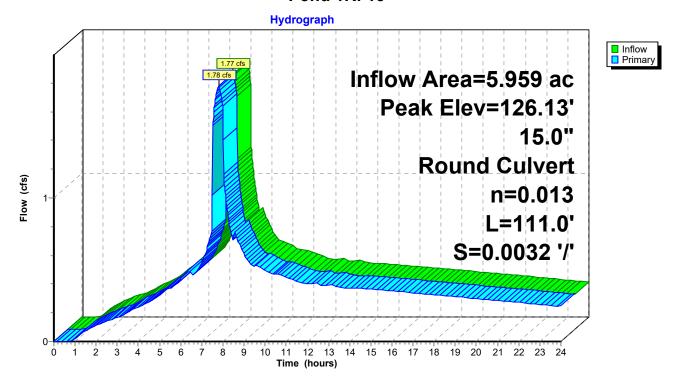
126 Chambers x 14.7 cf = 1,857.5 cf Chamber Storage


10,802.2 cf Field - 1,857.5 cf Chambers = 8,944.7 cf Stone x 40.0% Voids = 3,577.9 cf Stone Storage

Chamber Storage + Stone Storage = 5,435.4 cf = 0.125 af Overall Storage Efficiency = 50.3%Overall System Size = $67.28' \times 48.17' \times 3.33'$

126 Chambers 400.1 cy Field 331.3 cy Stone

Pond 1P: StormTech Chamber System

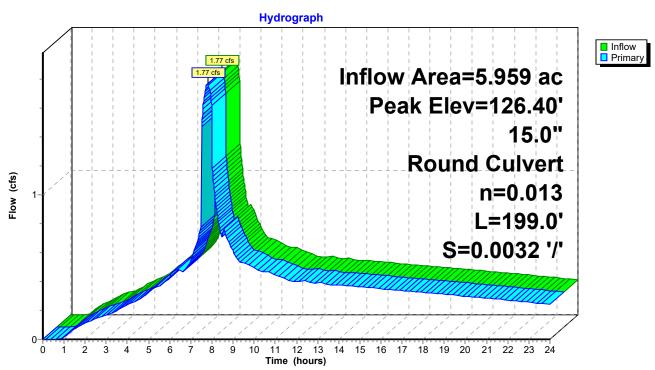

Summary for Pond 1R: 15"

Inflow Area =	5.959 ac, 73.93% Impervious, Inflow	Depth > 1.47" for 2-YR event
Inflow =	1.77 cfs @ 7.80 hrs, Volume=	0.729 af
Outflow =	1.78 cfs @ 7.80 hrs, Volume=	0.729 af, Atten= 0%, Lag= 0.0 min
Primary =	1.78 cfs @ 7.80 hrs, Volume=	0.729 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 126.13' @ 7.80 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	124.32'	15.0" Round Culvert L= 111.0' Ke= 0.500 Inlet / Outlet Invert= 124.32' / 123.97' S= 0.0032 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=1.78 cfs @ 7.80 hrs HW=126.13' TW=126.00' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.78 cfs @ 1.45 fps)

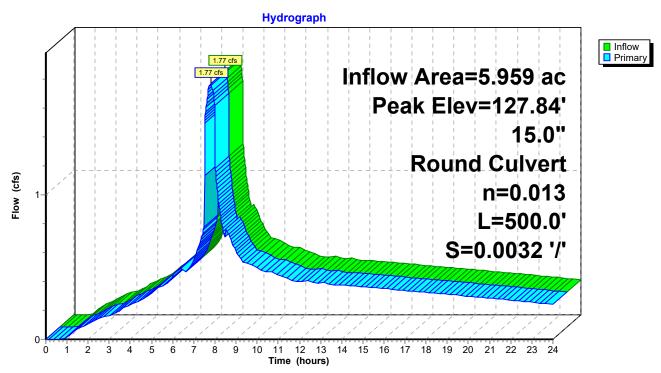


Pond 1R: 15"

Summary for Pond 2R: 15"

Inflow Area = 5.959 ac, 73.93% Impervious, Inflow Depth > 1.47" for 2-YR event							
Inflow =	1.77 cfs @	7.79 hrs, Volume= 0.729 af					
Outflow =	1.77 cfs @	7.80 hrs, Volume= 0.729 af, Atten= 0%, Lag= 0.3 min					
Primary =	1.77 cfs @	7.80 hrs, Volume= 0.729 af					
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 126.40' @ 7.79 hrs Flood Elev= 130.58'							
Device Routing	Invert	Outlet Devices					
#1 Primary	125.16'	15.0" Round Culvert L= 199.0' Ke= 0.500 Inlet / Outlet Invert= 125.16' / 124.52' S= 0.0032 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf					

Primary OutFlow Max=1.77 cfs @ 7.80 hrs HW=126.39' TW=126.13' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.77 cfs @ 1.81 fps)

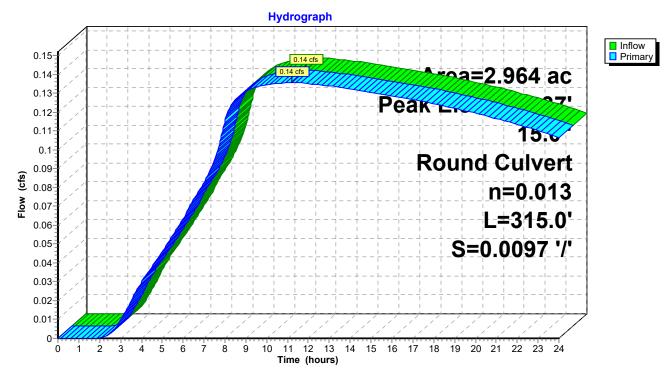


Pond 2R: 15"

Summary for Pond 3R: 15"

Inflow A Inflow Outflow Primary	=	1.77 cfs @ 1.77 cfs @	93% Impervious, Inflow Depth > 1.47" for 2-YR event 7.79 hrs, Volume= 0.729 af 7.79 hrs, Volume= 0.729 af, Atten= 0%, Lag= 0.0 min 7.79 hrs, Volume= 0.729 af					
	Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs							
	ev= 127.84 lev= 134.8	4' @ 7.80 hrs 0'						
Device Routing Invert Outlet Devices								
#1	Primary	126.96'						
Inlet / Outlet Invert= 126.96' / 125.34' S= 0.0032 '/' Cc= 0.900								
			n= 0.013, Flow Area= 1.23 sf					
			·					

Primary OutFlow Max=1.77 cfs @ 7.79 hrs HW=127.84' TW=126.39' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.77 cfs @ 2.71 fps)

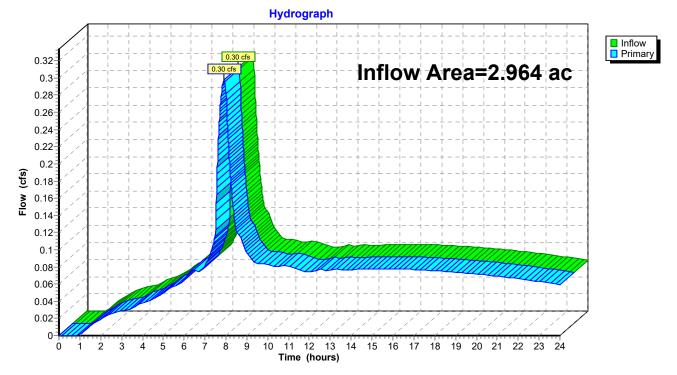

Pond 3R: 15"

Summary for Pond 4R: 15"

Inflow Area = Inflow = Outflow = Primary =	2.964 ac, 53.02% Impervious, Inflov 0.14 cfs @ 11.22 hrs, Volume= 0.14 cfs @ 11.22 hrs, Volume= 0.14 cfs @ 11.22 hrs, Volume=	w Depth > 0.77" for 2-YR event 0.190 af 0.190 af, Atten= 0%, Lag= 0.0 min 0.190 af				
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 130.37' @ 10.93 hrs Flood Elev= 139.58'						
Device Routin	g Invert Outlet Devices					

	U		-
#1	Primary	130.20'	15.0" Round Culvert L= 315.0' Ke= 0.500
			Inlet / Outlet Invert= 130.20' / 127.16' S= 0.0097 '/' Cc= 0.900
			n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=0.14 cfs @ 11.22 hrs HW=130.37' TW=127.37' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.14 cfs @ 2.05 fps)

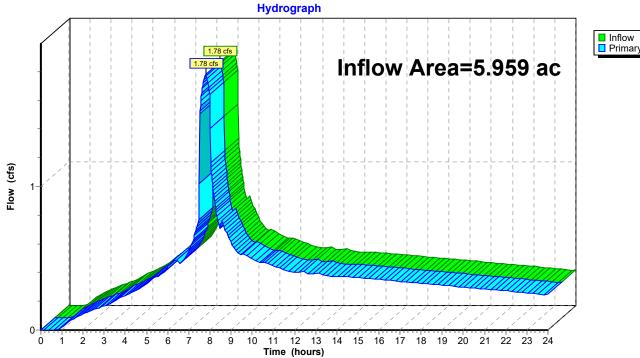


Pond 4R: 15"

Summary for Link 1L: PRE DEVELOPED

Inflow Are	a =	2.964 ac, 1	7.79% Impervious,	Inflow Depth > 0).56" for 2-YR event
Inflow	=	0.30 cfs @	7.92 hrs, Volume	= 0.139 a	f
Primary	=	0.30 cfs @	7.92 hrs, Volume	= 0.139 a [·]	f, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs


Link 1L: PRE DEVELOPED

Summary for Link 2L: (new Link)

Inflow Area =	5.959 ac, 7	3.93% Impervious, Inflo	w Depth > 1.47"	for 2-YR event
Inflow =	1.78 cfs @	7.80 hrs, Volume=	0.729 af	
Primary =	1.78 cfs @	7.80 hrs, Volume=	0.729 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

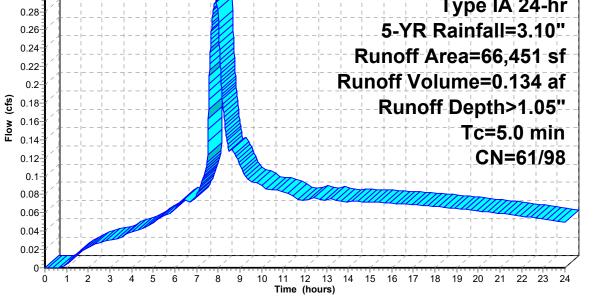
Fixed water surface Elevation= 126.00'

Link 2L: (new Link)

Summary for Subcatchment 1S: ONSITE

Runoff = 0.84 cfs @ 7.88 hrs, Volume= 0.288 af, Depth> 2.40"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 5-YR Rainfall=3.10"

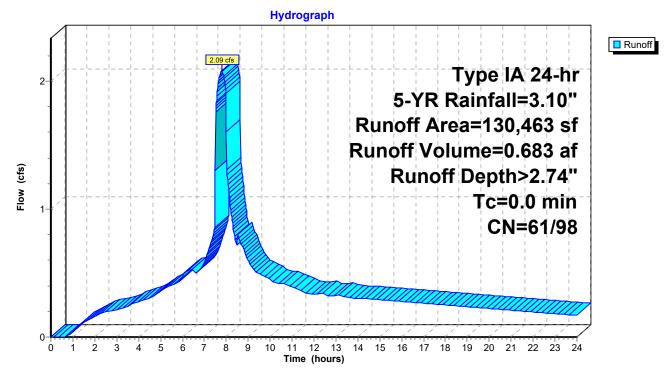

1		ea (sf) 50,879	<u>CN</u> 98		Descr MPE			;														
		1,787	61		>75%				. Go	od.	HS	GВ										
		62,666	91		Neigh					,		-										
		1,787			18.81																	
	5	50,879		8	31.19	% Irr	per	viou	s Are	ea												
To (min)		Length (feet)		ope t/ft)		ocity /sec)	C	apa	city cfs)	De	escri	ptio	n									
5.0	/	(1001)	(<u>urry</u>				(<u>, , , , , , , , , , , , , , , , , , , </u>	Di	rect	En	try,									
							Sı	ubca	atch	m	ent	1S	: 0	NS	ыті	Ξ						
								н	ydro	grap	h											
0	.9				 				- 		- 		 		$\frac{1}{1}$		 		$\frac{1}{1} \frac{1}{1}$			Runo
0.8						0.8	4 cfs		- T				i		T				I.A -	9	4 - L- u	
0.	.8			+ ·		·			- +	, , , , , , , , , , , , , , , , , , , ,	 		' 		 						1-hr	
0.7	′5 <u> </u>			+ ·		·		+ -	- 		-			5-\	/ R	R	air	nfa	ll=	3.	10"	
0.		x		+ ·	 	·	X	+ -	- +	-	 -	F	211	no	ff	Δr	ea:	=6	26	6	6 sf	<u>-</u>
0.65 0.65 0.6						+ - • +		+														
0.5				+ · + ·			XØ		- + I	· ·	- -	Ru			- 							
. 0 (cls				i 	i 		X	i 	i - +	; ,	i - I		F	Ru	no	ff	De	pt	h>	2.	40"	
LION (Cfs) 0. 0.4	15				 	·	X		- +	- L	 _	 -	 	 	 ↓		T	C=	51	0 1	nin	
- 0.				 	<u> </u>				- +		-	- 				!			1 1		L L _	
0.3 0.					L		1-6			- L 	_! !	. 	 	L	⊥ !		 	6	N=	61	/98	
0.2				 	<u> </u> 		1		- <u>-</u> - -	- <u>L</u> 		' 	' 		1 – – 		י ו ו				<u>-</u> '_ . 	
0.								- W	D = 1	-			 									
0.1	5															\overline{m}		\overline{m}				
0.		[]				· -		+ -	- 					 	$\frac{1}{1}$							
0.0	- 3		<u> </u>			<u> </u>				<u> </u>		 ////		·	 	<u> </u>		/	/		· · ·	\rightarrow
	0	1 2		4 :	/////// 56	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 8) 11	12	<u>13</u>	14	/ 15	16	 / 17	18	19	-1 <u>/</u> 20	21	-11- 22	23 24	4

Summary for Subcatchment 2S: Tax Lot 900

Runoff = 0.29 cfs @ 7.88 hrs, Volume= 0.134 af, Depth> 1.05"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 5-YR Rainfall=3.10"

	Area (sf)	CN	Description								
*	17,573	98	98 Impervious								
	48,878	61	I								
	66,451	71 Weighted Average									
	48,878 73.55% Pervious Area										
17,573 26.45% Impervious Area											
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•						
5.0	5.0 Direct Entry,										
			S	ubcatchn	nent 2S: Ta	ax Lot 9	900				
				Hydro	graph						
0.3	2					$-\frac{1}{1}$ - $-\frac{1}{1}$		$\frac{1}{1} = -\frac{1}{1} =$	$-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$	Runoff	
0.3		+									
0.2							Type		24-hr		
0.20	= /1					5 VD	Rainfa				
0.20	' =_+	+	+	+-+-		- J- I R	-Raiiiii	all-S). I_U		

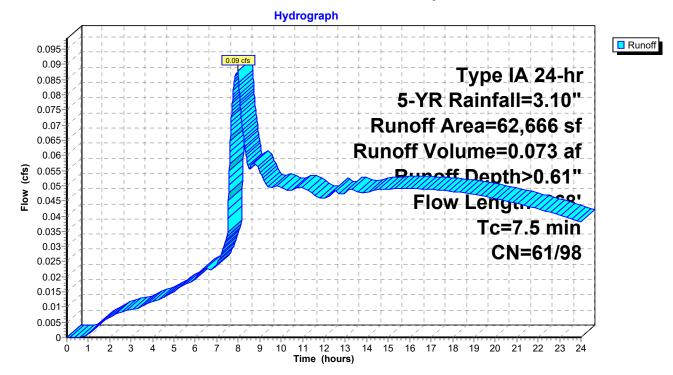

Summary for Subcatchment 3S: Tax Lot 500 & 600

Runoff = 2.09 cfs @ 7.79 hrs, Volume= 0.683 af, Depth> 2.74"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 5-YR Rainfall=3.10"

	Area (sf)	CN	Description			
*	81,458	98	AC Parking Lot			
*	42,005	98	Building			
	7,000	61	>75% Grass cover, Good, HSG B			
	130,463	96	Weighted Average			
	7,000		5.37% Pervious Area			
	123,463		94.63% Impervious Area			

Subcatchment 3S: Tax Lot 500 & 600


Summary for Subcatchment 7S: Pre-Developed Site

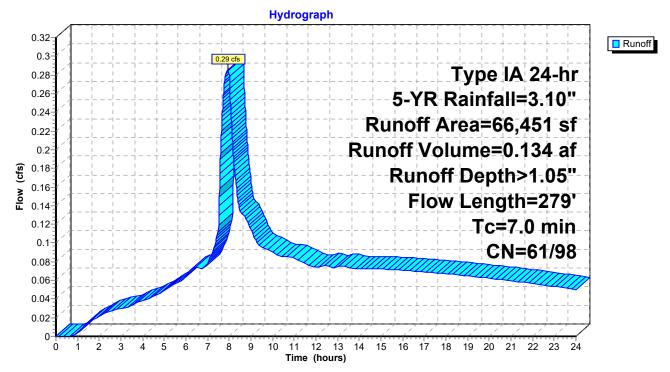
Runoff = 0.09 cfs @ 8.00 hrs, Volume= 0.073 af, Depth> 0.61"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 5-YR Rainfall=3.10"

_	A	rea (sf)	CN	Description							
*		57,266	61	61 pervious							
*		5,400	98	mpervious							
		62,666	64	Weighted A	verage						
		57,266	1	91.38% Pei	rvious Area						
		5,400		8.62% Impe	ervious Area	a					
	_				-						
	Tc	Length	Slope		Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	3.7	50	0.0450	0.23		Sheet Flow,					
						Grass: Short n= 0.150 P2= 3.90"					
	3.8	218	0.0190	0.96		Shallow Concentrated Flow,					
_						Short Grass Pasture Kv= 7.0 fps					
	7.5	268	Total								

Subcatchment 7S: Pre-Developed Site

Summary for Subcatchment 8S: Pre-Developed Site


Runoff = 0.29 cfs @ 7.92 hrs, Volume= 0.134 af, Depth> 1.05"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 5-YR Rainfall=3.10"

_	A	rea (sf)	CN E	Description		
*		48,882	61 p	ervious		
*		17,569	98 i	mpervious		
		66,451	71 V	Veighted A	verage	
		48,882	7	3.56% Pe	rvious Area	
		17,569	2	26.44% Imp	pervious Ar	ea
	_				-	
	Tc	Length	Slope	•	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.8	50	0.0230	0.17		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
	1.7	160	0.0530	1.61		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.0	11	0.4940	4.92		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.5	58	0.0900	2.10		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps

7.0 279 Total

Subcatchment 8S: Pre-Developed Site

Summary for Pond 1P: StormTech Chamber System

Inflow Area =	2.964 ac, 53	3.02% Impervious, Inflow D	Depth > 1.71" for 5-YR event
Inflow =	1.14 cfs @	7.88 hrs, Volume=	0.422 af
Outflow =	0.38 cfs @	8.98 hrs, Volume=	0.348 af, Atten= 66%, Lag= 66.3 min
Discarded =	0.05 cfs @	2.27 hrs, Volume=	0.085 af
Primary =	0.34 cfs @	8.98 hrs, Volume=	0.262 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 134.21' @ 8.98 hrs Surf.Area= 3,241 sf Storage= 4,306 cf Flood Elev= 139.00' Surf.Area= 3,241 sf Storage= 5,435 cf

Plug-Flow detention time= 225.4 min calculated for 0.347 af (82% of inflow) Center-of-Mass det. time= 107.7 min (807.5 - 699.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	131.75'	3,578 cf	48.17'W x 67.28'L x 3.33'H Field A
			10,802 cf Overall - 1,857 cf Embedded = 8,945 cf x 40.0% Voids
#2A	132.75'	1,857 cf	ADS_StormTech SC-310 +Cap x 126 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			14 Rows of 9 Chambers
		5,435 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	137.00'	4.0' long (Profile 17) MH Wier
			Head (feet) 0.49 0.98 1.48 1.97 2.46 2.95
			Coef. (English) 2.84 3.13 3.26 3.30 3.31 3.31
#2	Primary	131.75'	10.0" Round Culvert L= 7.0' Ke= 0.500
			Inlet / Outlet Invert= 131.75' / 131.71' S= 0.0057 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.55 sf
#3	Device 2	131.75'	1.9" Vert. Detention Orifice C= 0.620
#4	Device 2	133.85'	4.0" Vert. Orifice C= 0.600
#5	Discarded	131.75'	0.600 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.05 cfs @ 2.27 hrs HW=131.82' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.34 cfs @ 8.98 hrs HW=134.21' TW=130.47' (Dynamic Tailwater) **2=Culvert** (Passes 0.34 cfs of 3.76 cfs potential flow)

1=MH Wier (Controls 0.00 cfs)

-3=Detention Orifice (Orifice Controls 0.15 cfs @ 7.68 fps)

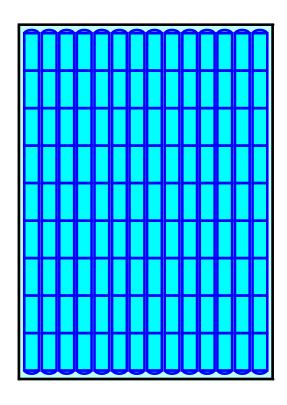
-4=Orifice (Orifice Controls 0.19 cfs @ 2.13 fps)

Pond 1P: StormTech Chamber System - Chamber Wizard Field A

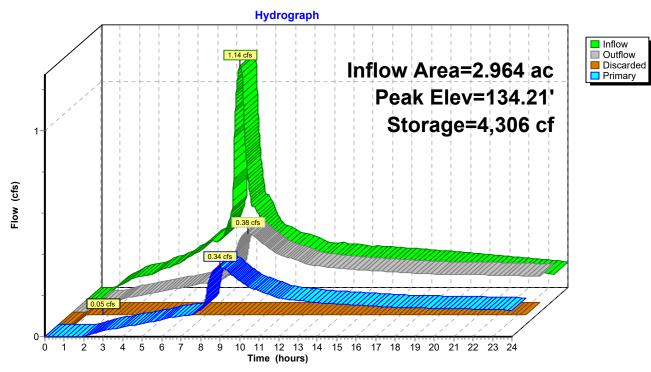
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTechSC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

9 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 65.28' Row Length +12.0" End Stone x 2 = 67.28' Base Length 14 Rows x 34.0" Wide + 6.0" Spacing x 13 + 12.0" Side Stone x 2 = 48.17' Base Width


12.0" Base + 16.0" Chamber Height + 12.0" Cover = 3.33' Field Height

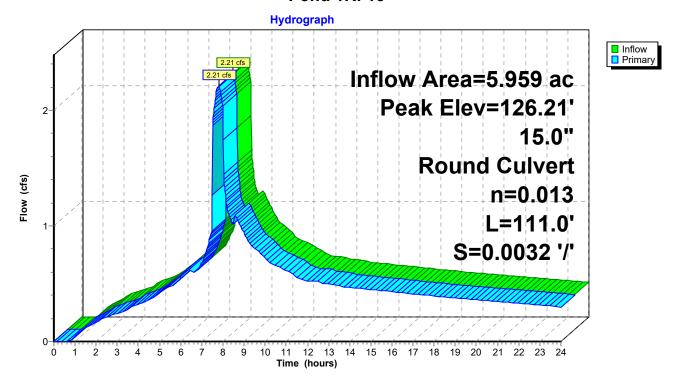
126 Chambers x 14.7 cf = 1,857.5 cf Chamber Storage


10,802.2 cf Field - 1,857.5 cf Chambers = 8,944.7 cf Stone x 40.0% Voids = 3,577.9 cf Stone Storage

Chamber Storage + Stone Storage = 5,435.4 cf = 0.125 af Overall Storage Efficiency = 50.3%Overall System Size = $67.28' \times 48.17' \times 3.33'$

126 Chambers 400.1 cy Field 331.3 cy Stone

Pond 1P: StormTech Chamber System

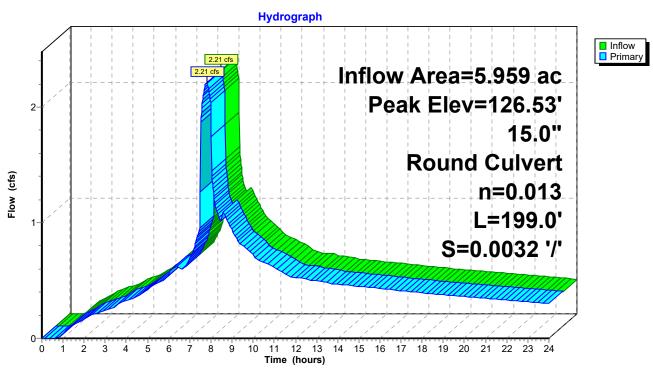

Summary for Pond 1R: 15"

Inflow Area =	5.959 ac, 73.93% Impervious, Inflo	w Depth > 1.90" for 5-YR event
Inflow =	2.21 cfs @ 7.80 hrs, Volume=	0.945 af
Outflow =	2.21 cfs @ 7.79 hrs, Volume=	0.945 af, Atten= 0%, Lag= 0.0 min
Primary =	2.21 cfs @ 7.79 hrs, Volume=	0.945 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 126.21' @ 7.79 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	124.32'	15.0" Round Culvert L= 111.0' Ke= 0.500 Inlet / Outlet Invert= 124.32' / 123.97' S= 0.0032 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=2.21 cfs @ 7.79 hrs HW=126.21' TW=126.00' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.21 cfs @ 1.80 fps)

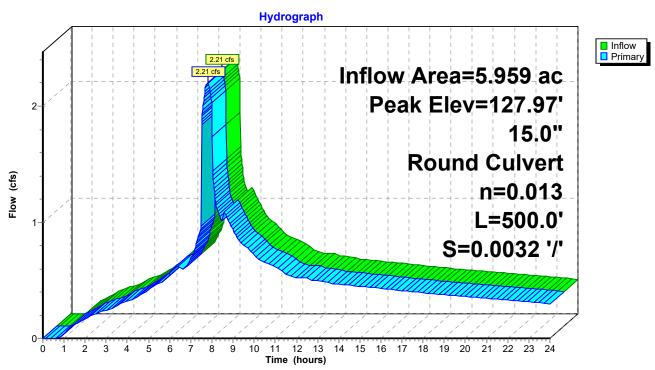


Pond 1R: 15"

Summary for Pond 2R: 15"

Inflow Area = 5.959 ac, 73.93% Impervious, Inflow Depth > 1.90" for 5-YR event								
Inflow =	2.21 cfs @	7.79 hrs, Volume= 0.945 af						
Outflow =	2.21 cfs @	7.80 hrs, Volume= 0.945 af, Atten= 0%, Lag= 0.4 min						
Primary =	2.21 cfs @	7.80 hrs, Volume= 0.945 af						
Peak Elev= 126.53	Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 126.53' @ 7.80 hrs Flood Elev= 130.58'							
Device Routing Invert Outlet Devices								
#1 Primary	125.16'	15.0" Round Culvert L= 199.0' Ke= 0.500 Inlet / Outlet Invert= 125.16' / 124.52' S= 0.0032 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf						

Primary OutFlow Max=2.21 cfs @ 7.80 hrs HW=126.53' TW=126.21' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.21 cfs @ 2.04 fps)



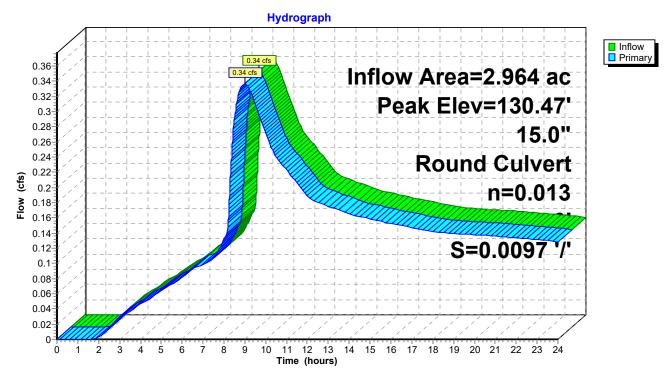
Pond 2R: 15"

Summary for Pond 3R: 15"

Inflow=2.21 cfs @7.79 hrs, Volume=0.945 afOutflow=2.21 cfs @7.79 hrs, Volume=0.945 af, Atten= 0%, Lag= 0.0 minPrimary=2.21 cfs @7.79 hrs, Volume=0.945 afRouting by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs0.945 afPeak Elev= 127.97' @ 7.79 hrs7.79 hrsFlood Elev= 134.80'Device Routing Invert Outlet Devices#1Primary126.96'15.0" Round Culvert L= 500.0' Ke= 0.500Inlet / Outlet Invert= 126.96' / 125.34' S= 0.0032 '/' Cc= 0.900n= 0.013, Flow Area= 1.23 sf		Inflow Area = 5.959 ac, 73.93% Impervious, Inflow Depth > 1.90" for 5-YR event								
Primary = 2.21 cfs @ 7.79 hrs, Volume= 0.945 af Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 127.97' @ 7.79 hrs Flood Elev= 134.80' Device Routing Invert Understand 11 Primary 126.96' 15.0" Round Culvert L= 500.0' Ke= 0.500 Inlet / Outlet Invert= 126.96' / 125.34'	Inflow = 2.21 cfs @ 7.79 hrs, Volume= 0.945 af									
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 127.97' @ 7.79 hrs Flood Elev= 134.80' Device Routing Invert Outlet Devices #1 Primary 126.96' 15.0" Round Culvert L= 500.0' Ke= 0.500 Inlet / Outlet Invert= 126.96' / 125.34' S= 0.0032 '/' Cc= 0.900		Outflow	=	2.21 cfs @	7.79 hrs, Volume= 0.945 af, Atten= 0%, Lag= 0.0 min					
Device Routing Invert Outlet Devices #1 Primary 126.96' 15.0" Round Culvert L= 500.0' Ke= 0.500 Inlet / Outlet Invert= 126.96' / 125.34' S= 0.0032 '/' Cc= 0.900		Primary	=	2.21 cfs @	7.79 hrs, Volume= 0.945 af					
#1 Primary 126.96' 15.0" Round Culvert L= 500.0' Ke= 0.500 Inlet / Outlet Invert= 126.96' / 125.34' S= 0.0032 '/' Cc= 0.900		Peak Elev= 127.97' @ 7.79 hrs								
Inlet / Outlet Invert= 126.96' / 125.34' S= 0.0032 '/' Cc= 0.900		Device Routing Invert Outlet Devices								

Primary OutFlow Max=2.21 cfs @ 7.79 hrs HW=127.97' TW=126.53' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.21 cfs @ 2.83 fps)

Pond 3R: 15"


Summary for Pond 4R: 15"

Inflow Area =		2.964 ac, 53	3.02% Impervious, Inflow D	Depth > 1.06" for 5-YR event
Inflow =	=	0.34 cfs @	8.98 hrs, Volume=	0.262 af
Outflow =	=	0.34 cfs @	8.98 hrs, Volume=	0.262 af, Atten= 0%, Lag= 0.0 min
Primary =	=	0.34 cfs @	8.98 hrs, Volume=	0.262 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 130.47' @ 8.96 hrs Flood Elev= 139.58'

Device	Routing	Invert	Outlet Devices
#1	Primary	130.20'	15.0" Round Culvert L= 315.0' Ke= 0.500 Inlet / Outlet Invert= 130.20' / 127.16' S= 0.0097 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=0.34 cfs @ 8.98 hrs HW=130.47' TW=127.57' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.34 cfs @ 2.64 fps)

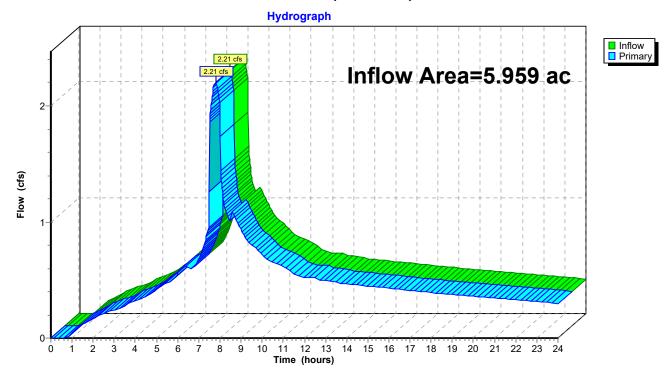


Pond 4R: 15"

Summary for Link 1L: PRE DEVELOPED

Inflow Are	a =	2.964 ac, 1	7.79% Impervious,	Inflow Depth > 0	.84" for 5-YR event
Inflow	=	0.37 cfs @	7.92 hrs, Volume=	= 0.207 at	-
Primary	=	0.37 cfs @	7.92 hrs, Volume=	= 0.207 at	f, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

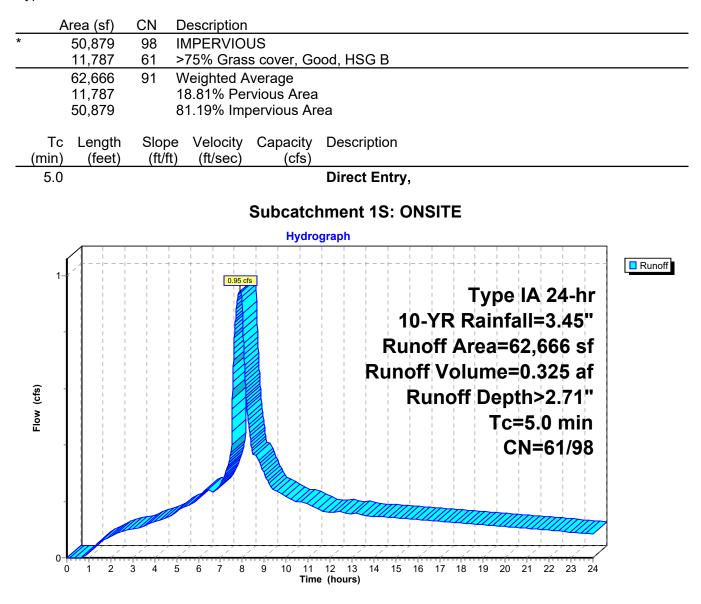

Link 1L: PRE DEVELOPED

Summary for Link 2L: (new Link)

Inflow Area	a =	5.959 ac, 73	3.93% Impervious,	Inflow Depth >	1.90"	for 5-YR event
Inflow	=	2.21 cfs @	7.79 hrs, Volume	e 0.945 a	af	
Primary	=	2.21 cfs @	7.79 hrs, Volume	e= 0.945 a	af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 126.00'

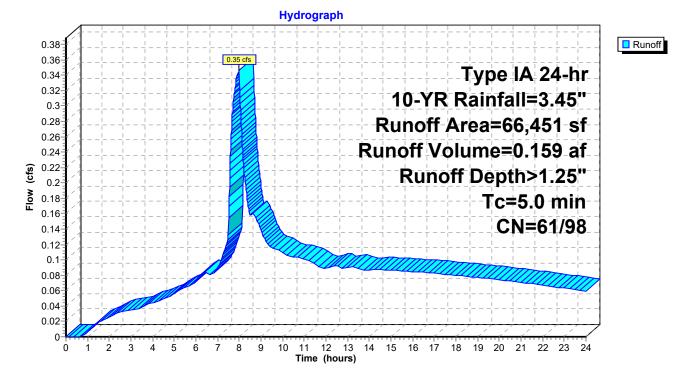


Link 2L: (new Link)

Summary for Subcatchment 1S: ONSITE

Runoff = 0.95 cfs @ 7.89 hrs, Volume= 0.325 af, Depth> 2.71"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 10-YR Rainfall=3.45"

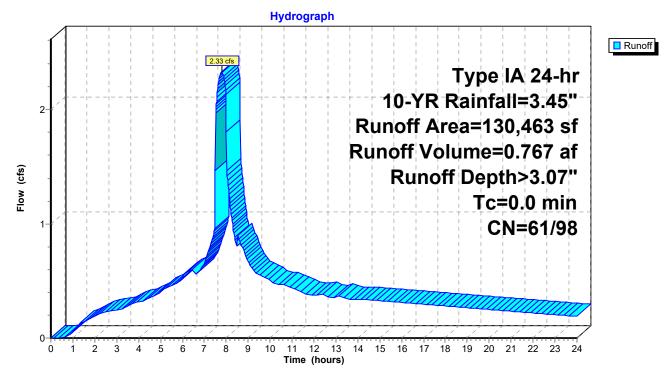

Summary for Subcatchment 2S: Tax Lot 900

Runoff = 0.35 cfs @ 7.99 hrs, Volume= 0.159 af, Depth> 1.25"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 10-YR Rainfall=3.45"

	Area (s	sf) C	N D	escription		
*	17,57	73 9	98 Ir	Impervious		
	48,87	78 6	61 >	75% Gras	s cover, Go	bod, HSG B
	66,45	51 7	71 W	/eighted A	verage	
	48,87	78	7	3.55% Per	vious Area	
	17,57	73	2	6.45% Imp	pervious Ar	ea
(Tc Leng min) (fe	gth S et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0					Direct Entry,

Subcatchment 2S: Tax Lot 900

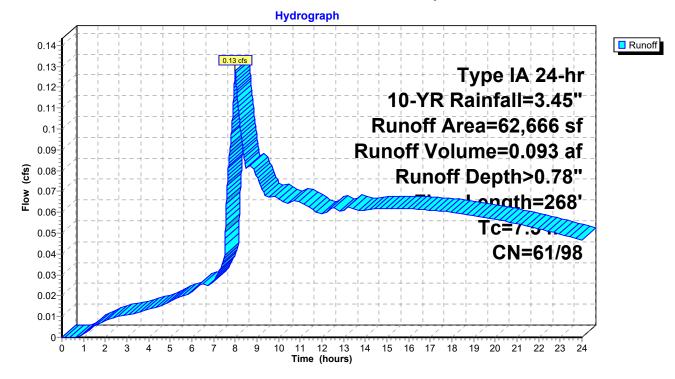

Summary for Subcatchment 3S: Tax Lot 500 & 600

Runoff = 2.33 cfs @ 7.79 hrs, Volume= 0.767 af, Depth> 3.07"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 10-YR Rainfall=3.45"

	Area (sf)	CN	Description
*	81,458	98	AC Parking Lot
*	42,005	98	Building
	7,000	61	>75% Grass cover, Good, HSG B
	130,463	96	Weighted Average
	7,000		5.37% Pervious Area
	123,463		94.63% Impervious Area

Subcatchment 3S: Tax Lot 500 & 600


Summary for Subcatchment 7S: Pre-Developed Site

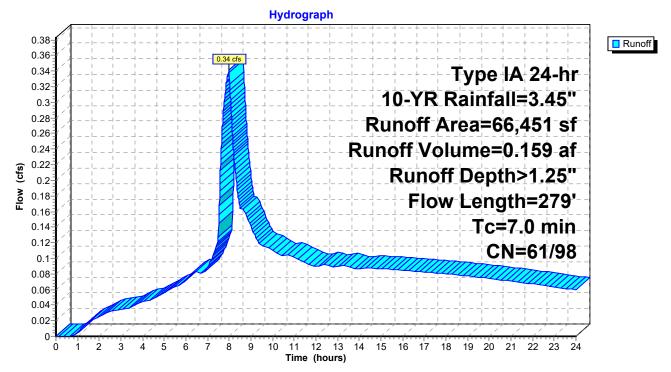
Runoff = 0.13 cfs @ 8.00 hrs, Volume= 0.093 af, Depth> 0.78"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 10-YR Rainfall=3.45"

	A	rea (sf)	CN	Description		
*		57,266	61	pervious		
*		5,400	98	mpervious		
		62,666	64	Neighted A	verage	
		57,266	9	91.38% Pei	rvious Area	
	5,400 8.62% Impervious Area					а
	_				_	
	Tc	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.7	50	0.0450	0.23		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
	3.8	218	0.0190	0.96		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	7.5	268	Total			

Subcatchment 7S: Pre-Developed Site

Summary for Subcatchment 8S: Pre-Developed Site


Runoff = 0.34 cfs @ 8.00 hrs, Volume= 0.159 af, Depth> 1.25"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 10-YR Rainfall=3.45"

	A	rea (sf)	CN E	Description		
*		48,882	61 p	ervious		
*		17,569	98 i	mpervious		
		66,451	71 V	Veighted A	verage	
		48,882	7	'3.56% Pei	rvious Area	
		17,569	2	26.44% Imp	pervious Ar	ea
	_					
	Tc	Length	Slope	•	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.8	50	0.0230	0.17		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
	1.7	160	0.0530	1.61		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.0	11	0.4940	4.92		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.5	58	0.0900	2.10		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps

7.0 279 Total

Subcatchment 8S: Pre-Developed Site

Summary for Pond 1P: StormTech Chamber System

Inflow Area =	2.964 ac, 53	3.02% Impervious, Inflow D	epth > 1.96" for 10-YR event
Inflow =	1.29 cfs @	7.91 hrs, Volume=	0.484 af
Outflow =	0.49 cfs @	8.78 hrs, Volume=	0.402 af, Atten= 62%, Lag= 51.8 min
Discarded =	0.05 cfs @	2.03 hrs, Volume=	0.086 af
Primary =	0.45 cfs @	8.78 hrs, Volume=	0.316 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 134.49' @ 8.78 hrs Surf.Area= 3,241 sf Storage= 4,670 cf Flood Elev= 139.00' Surf.Area= 3,241 sf Storage= 5,435 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 91.2 min (791.5 - 700.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	131.75'	3,578 cf	48.17'W x 67.28'L x 3.33'H Field A
			10,802 cf Overall - 1,857 cf Embedded = 8,945 cf x 40.0% Voids
#2A	132.75'	1,857 cf	ADS_StormTech SC-310 +Cap x 126 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			14 Rows of 9 Chambers
		5,435 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	137.00'	4.0' long (Profile 17) MH Wier
			Head (feet) 0.49 0.98 1.48 1.97 2.46 2.95
			Coef. (English) 2.84 3.13 3.26 3.30 3.31 3.31
#2	Primary	131.75'	10.0" Round Culvert L= 7.0' Ke= 0.500
			Inlet / Outlet Invert= 131.75' / 131.71' S= 0.0057 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.55 sf
#3	Device 2	131.75'	1.9" Vert. Detention Orifice C= 0.620
#4	Device 2	133.85'	4.0" Vert. Orifice C= 0.600
#5	Discarded	131.75'	0.600 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.05 cfs @ 2.03 hrs HW=131.82' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.45 cfs @ 8.78 hrs HW=134.49' TW=130.51' (Dynamic Tailwater) **2=Culvert** (Passes 0.45 cfs of 4.01 cfs potential flow)

1=MH Wier (Controls 0.00 cfs)

-3=Detention Orifice (Orifice Controls 0.16 cfs @ 8.12 fps)

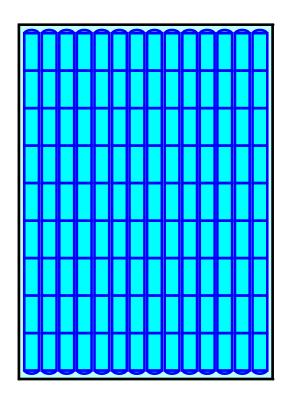
-4=Orifice (Orifice Controls 0.29 cfs @ 3.32 fps)

Pond 1P: StormTech Chamber System - Chamber Wizard Field A

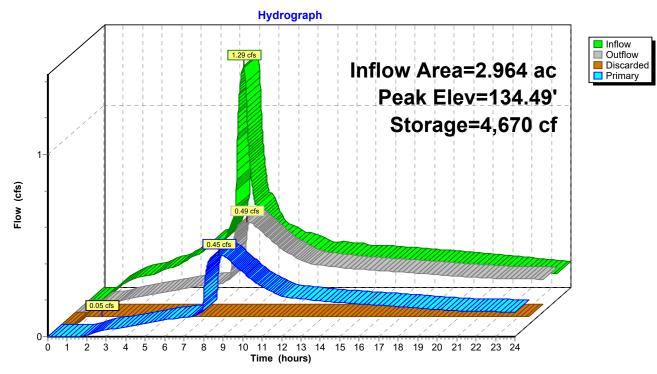
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

9 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 65.28' Row Length +12.0" End Stone x 2 = 67.28' Base Length 14 Rows x 34.0" Wide + 6.0" Spacing x 13 + 12.0" Side Stone x 2 = 48.17' Base Width


12.0" Base + 16.0" Chamber Height + 12.0" Cover = 3.33' Field Height

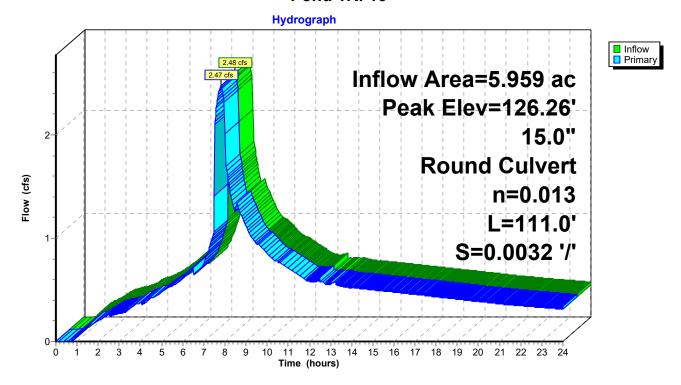
126 Chambers x 14.7 cf = 1,857.5 cf Chamber Storage


10,802.2 cf Field - 1,857.5 cf Chambers = 8,944.7 cf Stone x 40.0% Voids = 3,577.9 cf Stone Storage

Chamber Storage + Stone Storage = 5,435.4 cf = 0.125 af Overall Storage Efficiency = 50.3%Overall System Size = $67.28' \times 48.17' \times 3.33'$

126 Chambers 400.1 cy Field 331.3 cy Stone

Pond 1P: StormTech Chamber System

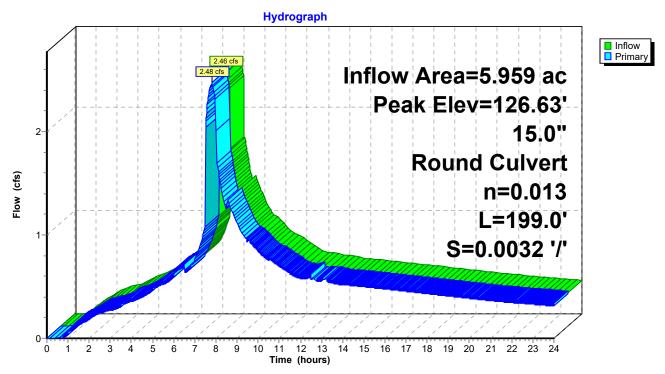

Summary for Pond 1R: 15"

Inflow Area	=	5.959 ac, 73	3.93% Impervious,	Inflow Depth >	2.18" for 10-YR event
Inflow =	=	2.48 cfs @	7.80 hrs, Volume	= 1.083	af
Outflow =	=	2.47 cfs @	7.80 hrs, Volume	= 1.083	af, Atten= 0%, Lag= 0.0 min
Primary =	=	2.47 cfs @	7.80 hrs, Volume	e= 1.083	af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 126.26' @ 7.80 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	124.32'	15.0" Round Culvert L= 111.0' Ke= 0.500 Inlet / Outlet Invert= 124.32' / 123.97' S= 0.0032 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=2.47 cfs @ 7.80 hrs HW=126.26' TW=126.00' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.47 cfs @ 2.02 fps)

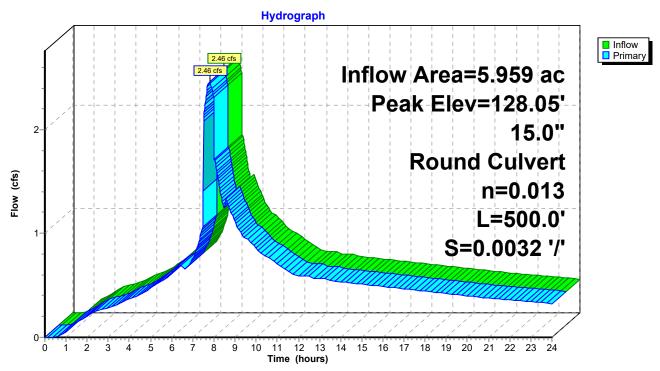


Pond 1R: 15"

Summary for Pond 2R: 15"

Inflow A Inflow	rea = =		93% Impervious, Inflow Depth > 2.18" for 10-YR event 7.79 hrs, Volume= 1.083 af			
Outflow Primary		<u> </u>	7.80 hrs, Volume= 1.083 af, Atten= 0%, Lag= 0.3 min 7.80 hrs, Volume= 1.083 af			
		C				
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 126.63' @ 7.80 hrs Flood Elev= 130.58'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	125.16'	15.0" Round Culvert L= 199.0' Ke= 0.500 Inlet / Outlet Invert= 125.16' / 124.52' S= 0.0032 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf			

Primary OutFlow Max=2.46 cfs @ 7.80 hrs HW=126.63' TW=126.26' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.46 cfs @ 2.15 fps)



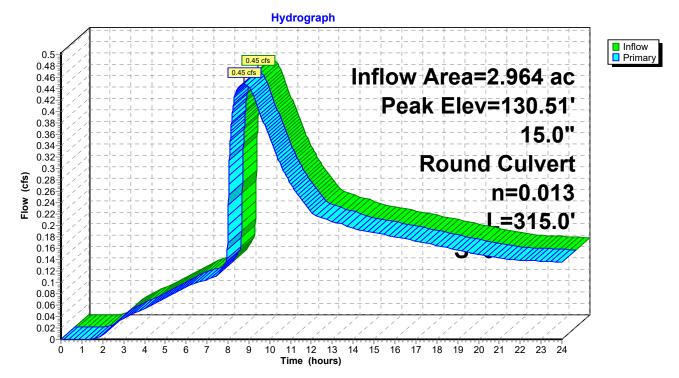
Pond 2R: 15"

Summary for Pond 3R: 15"

Inflow A Inflow Outflow Primary	= =	2.46 cfs @ 2.46 cfs @	93% Impervious, Inflow Depth > 2.18" for 10-YR event 7.79 hrs, Volume= 1.083 af 7.79 hrs, Volume= 1.083 af, Atten= 0%, Lag= 0.0 min 7.79 hrs, Volume= 1.083 af		
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 128.05' @ 7.79 hrs Flood Elev= 134.80'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	126.96'	15.0" Round Culvert L= 500.0' Ke= 0.500 Inlet / Outlet Invert= 126.96' / 125.34' S= 0.0032 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf		

Primary OutFlow Max=2.46 cfs @ 7.79 hrs HW=128.05' TW=126.62' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.46 cfs @ 2.88 fps)

Pond 3R: 15"

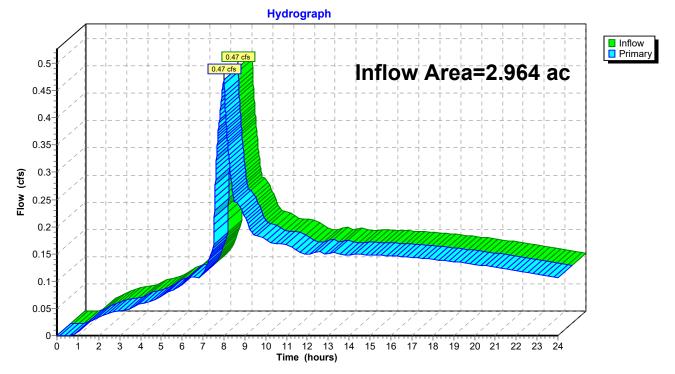

Summary for Pond 4R: 15"

Inflow Area =	2.964 ac, 53.0	02% Impervious, Inflow De	epth > 1.28" for 10-YR event
Inflow =	0.45 cfs @ 8	3.78 hrs, Volume=	0.316 af
Outflow =	0.45 cfs @ 8	3.78 hrs, Volume=	0.316 af, Atten= 0%, Lag= 0.0 min
Primary =	0.45 cfs @ 8	3.78 hrs, Volume=	0.316 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 130.51' @ 8.72 hrs Flood Elev= 139.58'

Device	Routing	Invert	Outlet Devices
#1	Primary	130.20'	15.0" Round Culvert L= 315.0' Ke= 0.500 Inlet / Outlet Invert= 130.20' / 127.16' S= 0.0097 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=0.45 cfs @ 8.78 hrs HW=130.51' TW=127.67' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.45 cfs @ 2.85 fps)

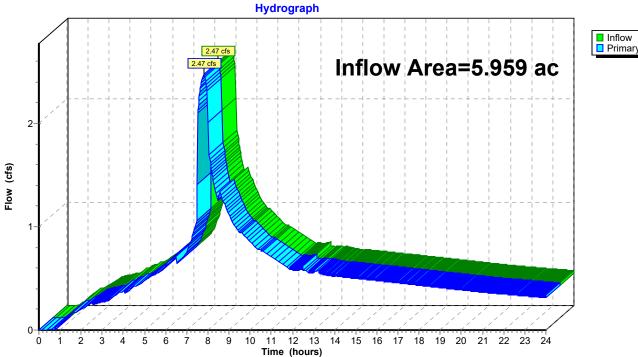


Pond 4R: 15"

Summary for Link 1L: PRE DEVELOPED

Inflow Area	a =	2.964 ac, 1	7.79% Impervious, Inflov	v Depth > 1.02"	for 10-YR event
Inflow	=	0.47 cfs @	8.00 hrs, Volume=	0.252 af	
Primary	=	0.47 cfs @	8.00 hrs, Volume=	0.252 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

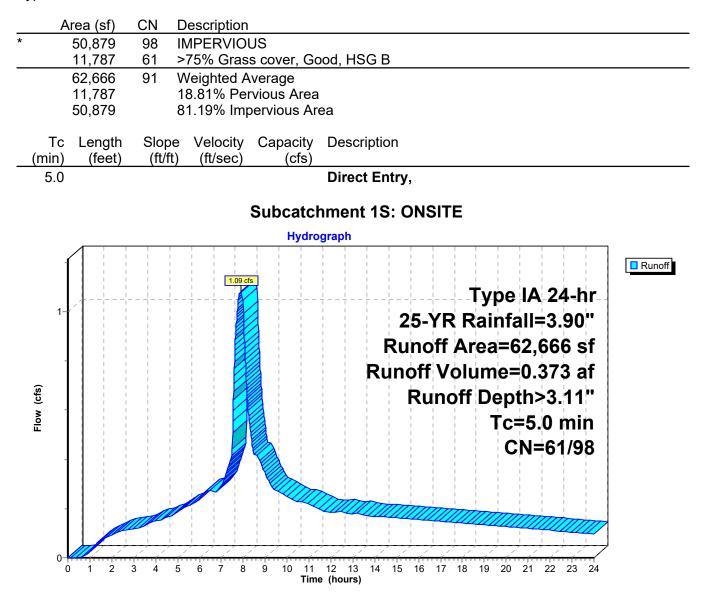

Link 1L: PRE DEVELOPED

Summary for Link 2L: (new Link)

Inflow Area	a =	5.959 ac, 73	3.93% Impervious	, Inflow Depth >	2.18"	for 10-YR event
Inflow	=	2.47 cfs @	7.80 hrs, Volum	e= 1.083	af	
Primary	=	2.47 cfs @	7.80 hrs, Volum	e= 1.083	af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 126.00'

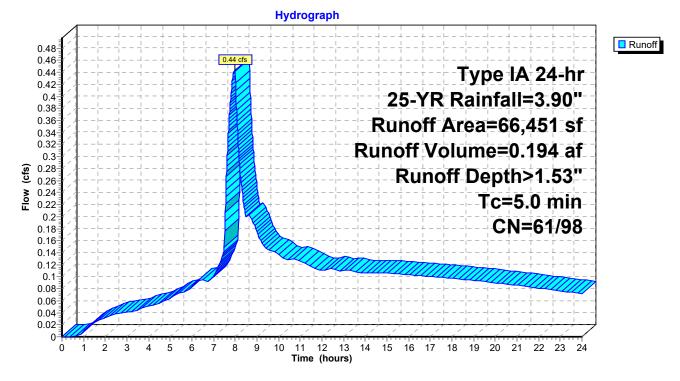


Link 2L: (new Link)

Summary for Subcatchment 1S: ONSITE

Runoff = 1.09 cfs @ 7.89 hrs, Volume= 0.373 af, Depth> 3.11"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 25-YR Rainfall=3.90"

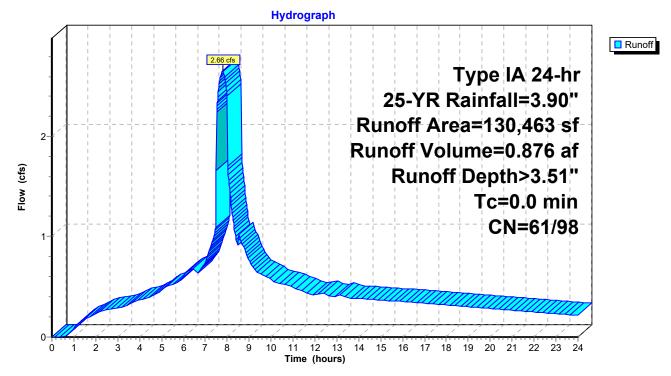

Summary for Subcatchment 2S: Tax Lot 900

Runoff = 0.44 cfs @ 7.98 hrs, Volume= 0.194 af, Depth> 1.53"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 25-YR Rainfall=3.90"

_	A	rea (sf)	CN	Description		
*		17,573	98	Impervious		
_		48,878	61	>75% Gras	s cover, Go	ood, HSG B
		66,451	71	Weighted A	verage	
		48,878		73.55% Pe	rvious Area	3
		17,573		26.45% Im	pervious Ar	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft		(cfs)	
	5.0					Direct Entry,

Subcatchment 2S: Tax Lot 900

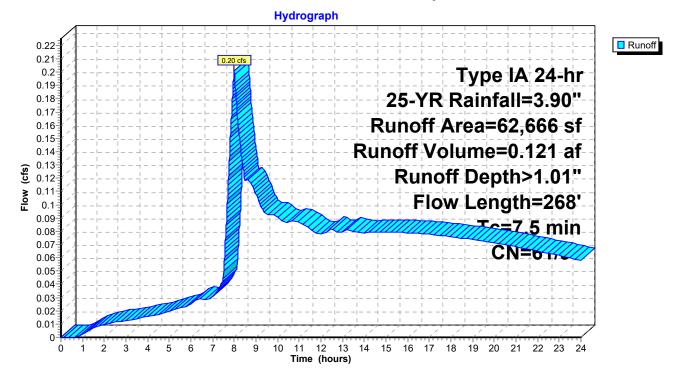

Summary for Subcatchment 3S: Tax Lot 500 & 600

Runoff = 2.66 cfs @ 7.79 hrs, Volume= 0.876 af, Depth> 3.51"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 25-YR Rainfall=3.90"

	Area (sf)	CN	Description
*	81,458	98	AC Parking Lot
*	42,005	98	Building
	7,000	61	>75% Grass cover, Good, HSG B
	130,463	96	Weighted Average
	7,000		5.37% Pervious Area
	123,463		94.63% Impervious Area

Subcatchment 3S: Tax Lot 500 & 600


Summary for Subcatchment 7S: Pre-Developed Site

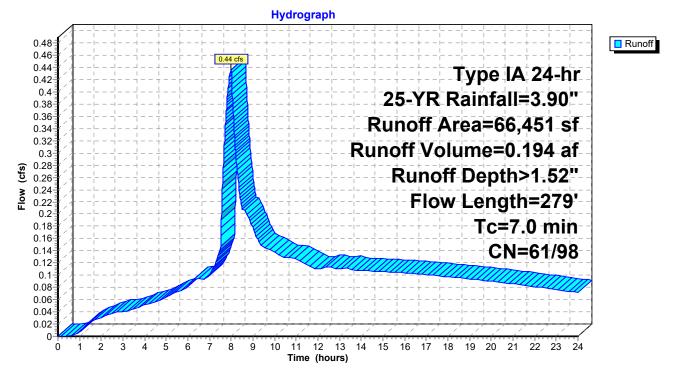
Runoff = 0.20 cfs @ 8.00 hrs, Volume= 0.121 af, Depth> 1.01"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 25-YR Rainfall=3.90"

_	A	rea (sf)	CN [Description		
*		57,266	61 p	pervious		
*		5,400	98 i	mpervious		
		62,666	64 V	Veighted A	verage	
		57,266	ę	1.38% Pe	rvious Area	
		5,400	8	3.62% Impe	ervious Area	а
	_				_	
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.7	50	0.0450	0.23		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.90"
	3.8	218	0.0190	0.96		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	7.5	268	Total			

Subcatchment 7S: Pre-Developed Site

Summary for Subcatchment 8S: Pre-Developed Site


Runoff = 0.44 cfs @ 8.00 hrs, Volume= 0.194 af, Depth> 1.52"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type IA 24-hr 25-YR Rainfall=3.90"

	A	rea (sf)	CN E	Description		
*		48,882	61 p	ervious		
*		17,569	98 iı	mpervious		
		66,451	71 V	Veighted A	verage	
		48,882	7	3.56% Pe	rvious Area	
		17,569	2	26.44% Imp	pervious Ar	ea
	_					
	Tc	Length	Slope	•	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.8	50	0.0230	0.17		Sheet Flow,
						Grass: Short
	1.7	160	0.0530	1.61		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.0	11	0.4940	4.92		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.5	58	0.0900	2.10		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps

7.0 279 Total

Subcatchment 8S: Pre-Developed Site

Summary for Pond 1P: StormTech Chamber System

Inflow Area =	2.964 ac, 53	3.02% Impervious, Inflow D	epth > 2.30" for 25-YR event
Inflow =	1.52 cfs @	7.92 hrs, Volume=	0.567 af
Outflow =	0.63 cfs @	8.47 hrs, Volume=	0.479 af, Atten= 58%, Lag= 33.1 min
Discarded =	0.05 cfs @	1.78 hrs, Volume=	0.086 af
Primary =	0.59 cfs @	8.47 hrs, Volume=	0.393 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 134.98' @ 8.47 hrs Surf.Area= 3,241 sf Storage= 5,304 cf Flood Elev= 139.00' Surf.Area= 3,241 sf Storage= 5,435 cf

Plug-Flow detention time= 185.9 min calculated for 0.479 af (84% of inflow) Center-of-Mass det. time= 80.9 min (781.5 - 700.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	131.75'	3,578 cf	48.17'W x 67.28'L x 3.33'H Field A
			10,802 cf Overall - 1,857 cf Embedded = 8,945 cf x 40.0% Voids
#2A	132.75'	1,857 cf	ADS_StormTech SC-310 +Cap x 126 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			14 Rows of 9 Chambers
		5,435 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Device 2	137.00'	4.0' long (Profile 17) MH Wier
			Head (feet) 0.49 0.98 1.48 1.97 2.46 2.95
			Coef. (English) 2.84 3.13 3.26 3.30 3.31 3.31
#2	Primary	131.75'	10.0" Round Culvert L= 7.0' Ke= 0.500
			Inlet / Outlet Invert= 131.75' / 131.71' S= 0.0057 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.55 sf
#3	Device 2	131.75'	1.9" Vert. Detention Orifice C= 0.620
#4	Device 2	133.85'	4.0" Vert. Orifice C= 0.600
#5	Discarded	131.75'	0.600 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.05 cfs @ 1.78 hrs HW=131.82' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.59 cfs @ 8.47 hrs HW=134.98' TW=130.56' (Dynamic Tailwater)

1=MH Wier (Controls 0.00 cfs)

-3=Detention Orifice (Orifice Controls 0.17 cfs @ 8.83 fps)

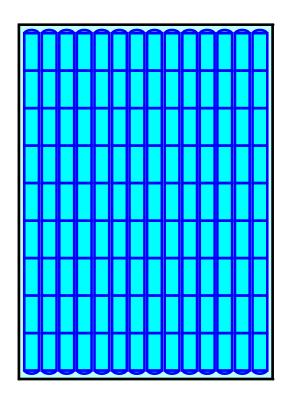
-4=Orifice (Orifice Controls 0.41 cfs @ 4.73 fps)

Pond 1P: StormTech Chamber System - Chamber Wizard Field A

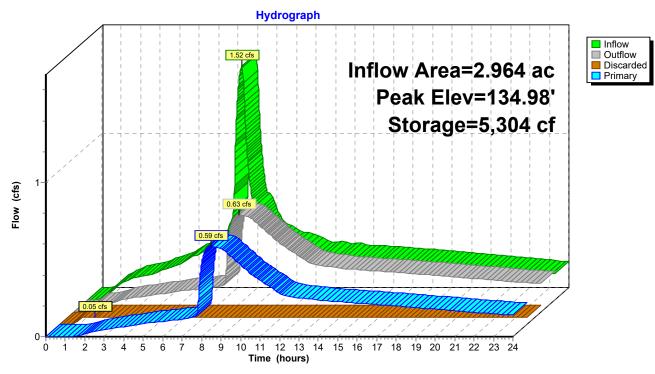
Chamber Model = ADS_StormTechSC-310 +Cap (ADS StormTech®SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

9 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 65.28' Row Length +12.0" End Stone x 2 = 67.28' Base Length 14 Rows x 34.0" Wide + 6.0" Spacing x 13 + 12.0" Side Stone x 2 = 48.17' Base Width


12.0" Base + 16.0" Chamber Height + 12.0" Cover = 3.33' Field Height

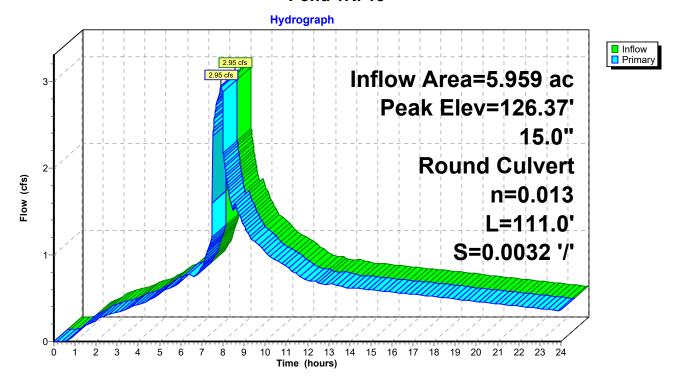
126 Chambers x 14.7 cf = 1,857.5 cf Chamber Storage


10,802.2 cf Field - 1,857.5 cf Chambers = 8,944.7 cf Stone x 40.0% Voids = 3,577.9 cf Stone Storage

Chamber Storage + Stone Storage = 5,435.4 cf = 0.125 af Overall Storage Efficiency = 50.3%Overall System Size = $67.28' \times 48.17' \times 3.33'$

126 Chambers 400.1 cy Field 331.3 cy Stone

Pond 1P: StormTech Chamber System

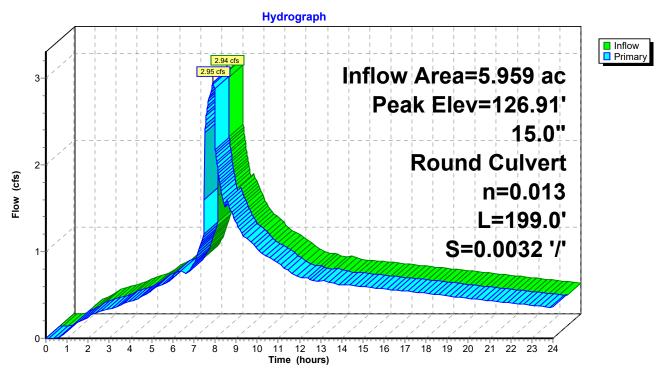

Summary for Pond 1R: 15"

Inflow Area =	5.959 ac,	73.93% Impervious, In	flow Depth > 2.56" for 25-YR event
Inflow =	2.95 cfs @	7.90 hrs, Volume=	1.269 af
Outflow =	2.95 cfs @	7.90 hrs, Volume=	1.269 af, Atten= 0%, Lag= 0.0 min
Primary =	2.95 cfs @	7.90 hrs, Volume=	1.269 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 126.37' @ 7.90 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	124.32'	15.0" Round Culvert L= 111.0' Ke= 0.500 Inlet / Outlet Invert= 124.32' / 123.97' S= 0.0032 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=2.95 cfs @ 7.90 hrs HW=126.37' TW=126.00' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.95 cfs @ 2.40 fps)

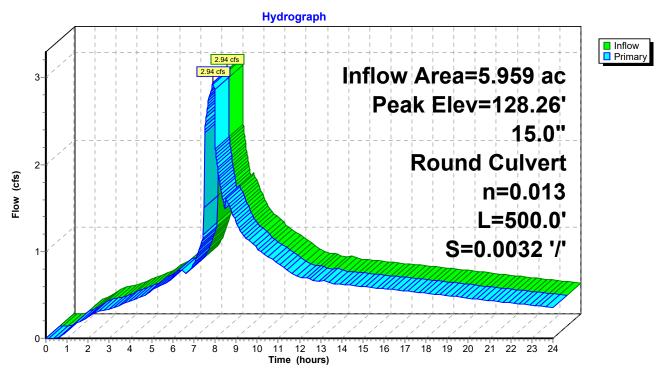


Pond 1R: 15"

Summary for Pond 2R: 15"

Inflow Area			93% Impervious, Inflow Depth > 2.56" for 25-YR event 7.90 hrs, Volume= 1.269 af			
Outflow	=	2.95 cfs @ 7	7.90 hrs, Volume= 1.269 af, Atten= 0%, Lag= 0.0 min			
Primary	=	2.95 cfs @	7.90 hrs, Volume= 1.269 af			
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 126.91' @ 7.90 hrs Flood Elev= 130.58'						
Device F	Routing	Invert	Outlet Devices			
#1 F	Primary	125.16'	15.0" Round Culvert L= 199.0' Ke= 0.500 Inlet / Outlet Invert= 125.16' / 124.52' S= 0.0032 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf			

Primary OutFlow Max=2.94 cfs @ 7.90 hrs HW=126.91' TW=126.37' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.94 cfs @ 2.40 fps)

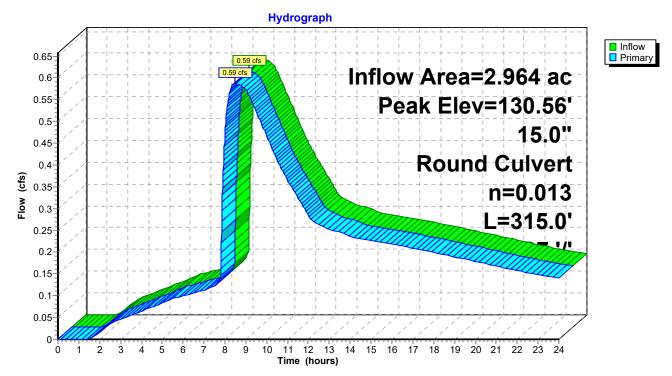


Pond 2R: 15"

Summary for Pond 3R: 15"

Inflow A Inflow	=	2.94 cfs @	93% Impervious, Inflow Depth > 2.56" for 25-YR event 7.90 hrs, Volume= 1.269 af 2.00 hrs, Volume= 1.260 of Atton= 0% Log= 0.0 min			
Outflow		0	7.90 hrs, Volume= 1.269 af, Atten= 0%, Lag= 0.0 min			
Primary	=	2.94 cts @	7.90 hrs, Volume= 1.269 af			
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 128.26' @ 7.91 hrs Flood Elev= 134.80'						
Device	Routing	Invert	Outlet Devices			
#1	Primary	126.96'	15.0" Round Culvert L= 500.0' Ke= 0.500 Inlet / Outlet Invert= 126.96' / 125.34' S= 0.0032 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf			

Primary OutFlow Max=2.94 cfs @ 7.90 hrs HW=128.26' TW=126.91' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.94 cfs @ 2.87 fps)

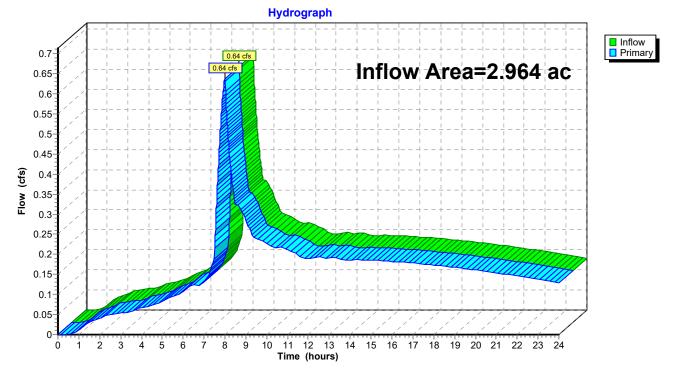

Pond 3R: 15"

Summary for Pond 4R: 15"

Inflow Area =		2.964 ac, 53.	02% Impervious, Inflow Depth > 1.59" for 25-YR event			
Inflow	=	0.59 cfs @	8.47 hrs, Volume= 0.393 af			
Outflow	=	0.59 cfs @	8.47 hrs, Volume= 0.393 af, Atten= 0%, Lag= 0.0 min			
Primary	=	0.59 cfs @	8.47 hrs, Volume= 0.393 af			
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 130.56' @ 8.53 hrs Flood Elev= 139.58'						
Device	Routing	Invert	Outlet Devices			
#1	Primary	130.20'	15.0" Round Culvert L= 315.0' Ke= 0.500 Inlet / Outlet Invert= 130.20' / 127.16' S= 0.0097 '/' Cc= 0.900			

Inlet / Outlet Invert= 130.20' / 127.16' S= 0.0097 '/' Cc= n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=0.59 cfs @ 8.47 hrs HW=130.56' TW=127.75' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 0.59 cfs @ 3.05 fps)

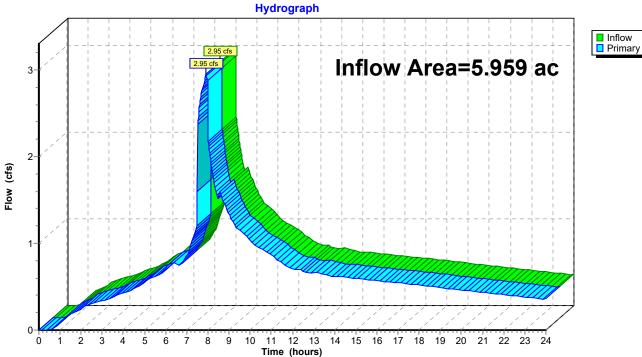


Pond 4R: 15"

Summary for Link 1L: PRE DEVELOPED

Inflow Area	ı =	2.964 ac, 1	7.79% Impervious,	Inflow Depth >	1.27"	for 25-YR event
Inflow	=	0.64 cfs @	8.00 hrs, Volume	= 0.315	af	
Primary	=	0.64 cfs @	8.00 hrs, Volume	= 0.315 a	af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs


Link 1L: PRE DEVELOPED

Summary for Link 2L: (new Link)

Inflow Area	a =	5.959 ac, 73	3.93% Impervious,	Inflow Depth >	2.56"	for 25-YR event
Inflow	=	2.95 cfs @	7.90 hrs, Volume	e= 1.269	af	
Primary	=	2.95 cfs @	7.90 hrs, Volume	e= 1.269	af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Fixed water surface Elevation= 126.00'

Link 2L: (new Link)

Appendix B: Stormwater Quality Calculations

STORMWATER QUALITY CALCULATIONS

Client: Rayborn's Plumbing Project: Payborn's Plumbing AKS Job No.: 7949 Date: 2/8/2023 Done By: DRP Checked By: PAS

IMPERVIOUS AREA

Total Site Area:	1.44	acres
Total Site Area:	62,669	square feet (sf)
Stormwater Facility & Landscaping (0% impervious):	0	sf
Residential Development (65% impervious):	0	sf
Road & Sidewalk (100% impervious):	50,464	sf
Total Impervious Area:	50,464	sf

WATER DESIGN QUALITY VOLUME (WQV)

(Per CWS 4.08.5a2 - R&O 19-05)

WQV =	0.36" X Area (ft)	=	1514	cubic feet
_	12" per ft			

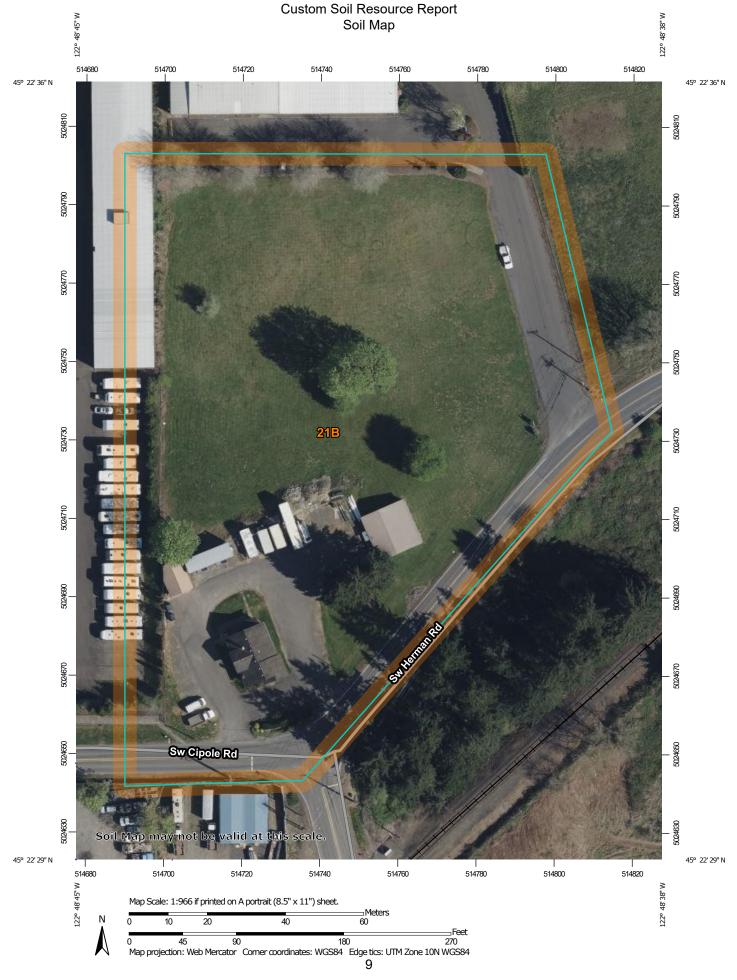
WATER QUALITY FLOW (WQF)

(Per CWS 4.08.5a3 - R&O 19-05)

WQF = WQV (sf) = 0.11 cfs4*60*60

Appendix C: NRCS Soil Resource Report


United States Department of Agriculture


Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Washington County, Oregon

	MAP L	EGEND)	MAP INFORMATION
Area of In	terest (AOI)	000	Spoil Area	The soil surveys that comprise your AOI were mapped at
	Area of Interest (AOI)	٥	Stony Spot	1:20,000.
Soils		۵	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
	Soil Map Unit Polygons	\$2	Wet Spot	
~	Soil Map Unit Lines	Δ	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
	Soil Map Unit Points		Special Line Features	line placement. The maps do not show the small areas of
Special (0)	Point Features Blowout	Water Fea	atures	contrasting soils that could have been shown at a more detailed scale.
•	Borrow Pit	\sim	Streams and Canals	
X	Clay Spot	Transport		Please rely on the bar scale on each map sheet for map
	Closed Depression	+++	Rails	measurements.
\diamond	Gravel Pit	~	Interstate Highways	Source of Map: Natural Resources Conservation Service
X	Gravelly Spot	~	US Routes	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
	Landfill	\approx	Major Roads	
0		~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts
A.	Lava Flow	Backgrou		distance and area. A projection that preserves area, such as the
علله	Marsh or swamp	The second	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
Ŕ	Mine or Quarry			
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
0	Perennial Water			of the version date(s) listed below.
\sim	Rock Outcrop			Soil Survey Area: Washington County, Oregon
+	Saline Spot			Survey Area Data: Version 22, Sep 14, 2022
° • °	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
\$	Sinkhole			Date(s) aerial images were photographed: Apr 16, 2021—Apr
≫	Slide or Slip			18, 2021
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
21B	Hillsboro loam, 3 to 7 percent slopes	3.9	100.0%
Totals for Area of Interest		3.9	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Washington County, Oregon

21B—Hillsboro loam, 3 to 7 percent slopes

Map Unit Setting

National map unit symbol: 21y6 Elevation: 160 to 240 feet Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 52 to 54 degrees F Frost-free period: 165 to 210 days Farmland classification: All areas are prime farmland

Map Unit Composition

Hillsboro and similar soils: 90 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hillsboro

Setting

Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Silty and loamy old alluvium

Typical profile

H1 - 0 to 15 inches: loam *H2 - 15 to 48 inches:* loam *H3 - 48 to 57 inches:* fine sandy loam *H4 - 57 to 81 inches:* fine sand

Properties and qualities

Slope: 3 to 7 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 10.6 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Ecological site: R002XC008OR - Valley Terrace Group Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix D: Runoff Curve Numbers From TR-55

Table 2-2aRunoff curve numbers for urban areas 1/2

				umbers for	
Cover description			-hydrologic	soil group	
	Average percent				
Cover type and hydrologic condition in	npervious area 2/	А	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.) ¾:					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	<u>61</u>	74	80
Impervious areas:	••••	00		11	00
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:	••••	90	90	90	90
Paved; curbs and storm sewers (excluding		00	00	00	00
right-of-way)		98	98	98 02	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)	••••	72	82	87	89
Western desert urban areas:					
Natural desert landscaping (pervious areas only) 4/	••••	63	77	85	88
Artificial desert landscaping (impervious weed barrier,					
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)	••••	96	96	96	96
Urban districts:					
Commercial and business	85	89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)	65	77	85	90	92
1/4 acre		61	75	83	87
1/3 acre	30	57	72	81	86
1/2 acre	25	54	70	80	85
1 acre		51	68	79	84
2 acres		46	65	77	82
- 402.00	12	10	00		54
Developing urban areas					
Newly graded areas					
(pervious areas only, no vegetation) 5/		77	86	91	94
Idle lands (CN's are determined using cover types					
similar to those in table 2-2c).					

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space

cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Table 2-2bRunoff curve numbers for cultivated agricultural lands 1/2

	Cover description		Curve numbers for hydrologic soil group				
	eover description	Hydrologic		n, a orogre son group			
Cover type	Treatment ^{2/}	condition $\frac{3}{2}$	А	В	С	D	
Fallow	Bare soil		77	86	91	94	
1 ullow	Crop residue cover (CR)	Poor	76	85	90	93	
	crop residue cover (or)	Good	74	83	88	90	
Row crops	Straight row (SR)	Poor	72	81	88	91	
	0	Good	67	78	85	89	
Fallow Row crops Small grain Close-seeded or broadcast legumes or rotation	SR + CR	Poor	71	80	87	90	
		Good	64	75	82	85	
	Contoured (C)	Poor	70	79	84	88	
		Good	65	75	82	86	
	C + CR	Poor	69	78	83	87	
		Good	64	74	81	85	
	Contoured & terraced (C&T)	Poor	66	74	80	82	
		Good	62	71	78	81	
	C&T+ CR	Poor	65	73	79	81	
		Good	61	70	77	80	
Small grain	SR	Poor	65	76	84	88	
-		Good	63	75	83	87	
	SR + CR	Poor	64	75	83	86	
		Good	60	72	80	84	
	С	Poor	63	74	82	85	
		Good	61	73	81	84	
Small grain Close-seeded or broadcast	C + CR	Poor	62	73	81	84	
		Good	60	72	80	83	
	C&T	Poor	61	72	79	82	
		Good	$\overline{59}$	70	78	81	
	C&T+ CR	Poor	60	71	78	81	
		Good	58	69	77	80	
Close-seeded	SR	Poor	66	77	85	89	
		Good	58	72	81	85	
	С	Poor	64	75	83	85	
		Good	55	69	78	83	
	C&T	Poor	63	73	80	83	
Close-seeded or broadcast legumes or		Good	51	67	76	80	

 $^{\rm 1}$ Average runoff condition, and $\rm I_a{=}0.2S$

 2 Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

Table 2-2c Runoff curve numbers for other agricultural lands $1\!\!/$

Cover description			umbers for soil group		
Cover type	Hydrologic condition	А	B	C	D
Pasture, grassland, or range—continuous	Poor	68	79	86	89
forage for grazing. 2	Fair Good	$\frac{49}{39}$	$\begin{array}{c} 69 \\ 61 \end{array}$	79 74	84 80
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78
Brush—brush-weed-grass mixture with brush the major element. ${}^{3\!/}$	Poor Fair Good	48 35 30 4⁄	$67 \\ 56 \\ 48$	77 70 65	83 77 73
Woods—grass combination (orchard or tree farm). 5/	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79
Woods. 6/	Poor Fair Good	45 36 30 4⁄	66 60 55	77 73 70	83 79 77
Farmsteads—buildings, lanes, driveways, and surrounding lots.	—	59	74	82	86

1 Average runoff condition, and $I_a = 0.2S$.

 $\mathbf{2}$ *Poor:* <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed. 3

Poor: <50% ground cover.

50 to 75% ground cover. Fair:

Good: >75% ground cover.

4 Actual curve number is less than 30; use CN = 30 for runoff computations.

5CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Table 2-2dRunoff curve numbers for arid and semiarid rangelands 1/2

Cover description		Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition ^{2/}	A 3⁄	В	С	D	
Herbaceous-mixture of grass, weeds, and	Poor		80	87	93	
low-growing brush, with brush the	Fair		71	81	89	
minor element.	Good		62	74	85	
Oak-aspen—mountain brush mixture of oak brush,	Poor		66	74	79	
aspen, mountain mahogany, bitter brush, maple,	Fair		48	57	63	
and other brush.	Good		30	41	48	
Pinyon-juniper—pinyon, juniper, or both;	Poor		75	85	89	
grass understory.	Fair		58	73	80	
	Good		41	61	71	
Sagebrush with grass understory.	Poor		67	80	85	
	Fair		51	63	70	
	Good		35	47	55	
Desert shrub—major plants include saltbush,	Poor	63	77	85	88	
greasewood, creosotebush, blackbrush, bursage,	Fair	55	72	81	86	
palo verde, mesquite, and cactus.	Good	49	68	79	84	

 1 $\,$ Average runoff condition, and $I_a,$ = 0.2S. For range in humid regions, use table 2-2c.

 2 $\,$ Poor: <30% ground cover (litter, grass, and brush overstory).

Fair: 30 to 70% ground cover.

Good: > 70% ground cover.

³ Curve numbers for group A have been developed only for desert shrub.