(1) lan mobley

Lu Pacific Development

Transportation Impact Study Tualatin, Oregon

Date:

August 31, 2020
Prepared for.
Angela Qi
Lu Pacific Properties, LLC
Prepared by:
Daniel Stumpf, PE
Terrington Smith, EIT
Executive Summary 4
Project Description 5
Introduction 5
Location Description 5
Vicinity Roadways 5
Study Intersections 6
Site Trips 8
Trip Generation 8
Total Trips 8
Truck Trips 9
Trip Distribution 10
Standards Vehicle Trips 10
Truck Trips 10
Traffic Volumes 14
Existing Conditions 14
Background Conditions 14
Buildout Conditions 15
Safety Analysis 19
Crash History Review 19
Sight Distance Evaluation 21
Warrant Analysis 21
Left-Turn Lane Warrants 21
Preliminary Traffic Signal Warrants 21
Turning Movement Analysis 22
Operational Analysis 23
Performance Standards 23
Delay \& Capacity Analysis 23
Conclusions 25
Appendix 26

Table of Figures

Figure 1: Vicinity Map 7
Figure 2: Site Trip Assignment (Standard Trips) 11
Figure 3: Site Trip Assignment (Truck Trips) 12
Figure 4: Site Trip Assignment (Total Trips) 13
Figure 5: Existing Traffic Volumes 16
Figure 6: Year 2022 Background Conditions 17
Figure 7: Year 2022 Buildout Conditions 18

Table of Tables

Table 1: Vicinity Roadway Descriptions 6
Table 2: Vicinity Intersection Descriptions 6
Table 3: Trip Generation Summary (Proposed Development) 8
Table 4: Trip Generation Summary (Based on Land Use Code 110) 9
Table 5: Crash Type Summary 20
Table 6: Crash Severity and Rate Summary 20
Table 7: Intersection Capacity Analysis Summary 24

Executive Summary

1. The proposed Lu Pacific Development, to be located at three vacant properties to the north and east of an existing building addressed at 10005 SW Herman Road in Tualatin, Oregon, and will include the construction of two industrial buildings totaling approximately 131,600 square-feet. Specifically, approximately 40 percent of the total building square-footage will be dedicated as manufacturing space while the remaining 60 percent as warehouse.
2. The proposed development is projected to generate 46 morning peak hour trips, 50 evening peak hour trips, and 344 average weekday trips. Of these, approximately 9 morning peak hour trips, 10 evening peak hour trips, and 69 average weekday trips are projected to be trucks.
3. No significant trends or crash patterns were identified at any of the study intersections that were indicative of safety concerns. Accordingly, no safety mitigation is recommended per the crash data analysis.
4. Adequate sight distance is available at the site access to ensure safe and efficient operation of the intersection.
5. Left-turn lane warrants are currently met for the westbound approach of the site access intersection along SW Herman Road during the morning peak hour. However, warrants are met under existing conditions and the proposed development will not add left-turning traffic on the westbound approach of the intersection. Therefore, a left-turn lane for this intersection approach is not necessary or recommended as part of the proposed development.
6. Under year 2022 buildout conditions, the left-turn lane warrants are projected to be met for the eastbound approach at the site access intersection during the morning peak hour.
7. Due to insufficient main and side-street traffic volumes, traffic signal warrants are not projected to be met at the site access intersection under any of the analysis scenarios.
8. Based on a turning movement analysis, no issues were found with regard to site ingress from the west and site egress to the east. For site ingress from the east and site egress to the west, the tractor-trailer style of vehicles may need to encroach onto the opposing travel lane along SW Herman Road in order to conduct the applicable turning movement without traversing over curbs and/or off-road.
9. All study intersections are currently operating acceptably per City of Tualatin standards and are projected to continue operating acceptably through the 2022 buildout year of the site.

Project Description

Introduction

The proposed Lu Pacific Development, to be located at three vacant properties to the north and east of an existing building addressed at 10005 SW Herman Road in Tualatin, Oregon, and will include the construction of two industrial buildings totaling approximately 131,600 square-feet. Specifically, approximately 40 percent of the total building square-footage will be dedicated as manufacturing space while the remaining 60 percent as warehouse. This report includes safety and capacity/level of service analyses at the following intersections:

1. SW Teton Avenue at SW Herman Road;
2. Site access at SW Herman Road; and
3. SW Tualatin Road at SW Herman Road.

The purpose of this study is to determine whether the transportation system within the vicinity of the site is capable of safely and efficiently supporting the proposed development and to determine any mitigation that may be necessary to do so. Detailed information on traffic counts, trip generation calculations, safety analyses, and level of service calculations is included in the appendix to this report.

Location Description

The subject site is located north of SW Herman Road, south/west of SW Tualatin Road, and east of SW Teton Avenue in Tualatin, Oregon. The site is located within a predominately industrial area of the City, with industrial uses to the north, south, and west, and a trailer park to the east.

The project site includes three tax lots (lots 900, 2900, and 3100) which encompass and approximate total of 8.6 acres. All three lots are currently undeveloped. Future access to the site will be provided via an existing driveway serving a building addressed at 10005 SW Herman Road.

Vicinity Roadways

The proposed development is expected to impact four vicinity roadways near the site. Table 1 provides a description of each vicinity roadway.

Table 1: Vicinity Roadway Descriptions

Roadway	Jurisdiction	Functional Classification	Cross- Section	Speed	On-street Parking	Bicycle Lanes	Curbs	Sidewalks
SW Herman Road	City of Tualatin	Major Arterial/Collect or	$\begin{aligned} & 2 \text { to } 3 \\ & \text { Lanes } \end{aligned}$	35/45 mph Posted	Not Permitted	Partial Both Sides	Partial Both Sides	Partial Both Sides
SW Teton Avenue	City of Tualatin	Major Collector	2 to 3 Lanes	35 mph Posted	Permitted Both Sides	Partial Both Sides	Both Sides	Partial Both Sides
Powder Court	City of Tualatin	Local Street	2 Lanes	15 mph Statutory	Not Permitted	None	Both Sides	East Side
SW Tualatin Road	City of Tualatin	Major Collector	$\begin{aligned} & 2 \text { to } 3 \\ & \text { Lanes } \end{aligned}$	35 mph Posted	Permitted Both Sides	Both Sides	Both Sides	Partial Both Sides

Notes: Functional Classification based on the City of Tualatin Transportation System Plan

Study Intersections

The proposed development is expected to impact three vicinity intersections of significance. Table 2 provides a summarized description of the study intersections.

Table 2: Vicinity Intersection Descriptions

Number	Name	Geometry	Traffic Control	Phasing/Stopped Approaches
1	SW Teton Avenue at SW Herman Road	Four-Legged	Signalized	FYA N/S \& E/W Left-turns, YieldControlled/Channelized E/W Rightturns
2	Site Access at SW Herman Road	Three-Legged	Stop Controlled	SB Stopped Approach
3	SW Tualatin Road at SW Herman Road	Three-Legged	Signalized	NB/SB Stop Controlled

Note: Flashing-Yellow-Arrow denoted at FYA.

A vicinity map displaying the project site, vicinity streets, and the study intersections with their associated lane configurations and control types is shown in Figure 1 on page 7.

Figure 1

Site Trips

Trip Generation

Total Trips

The proposed Lu Pacific Development will include the construction of two industrial buildings totaling approximately 131,600 square-feet, where approximately 40 percent of the square-footage will be dedicated as manufacturing and approximately 60 percent as warehouse. To estimate the number of trips that will be generated by the proposed development, trip rates from the Trip Generation Manual ${ }^{1}$ were used. Specifically, data from land use codes 140, Manufacturing, and 150, Warehousing, were used based on the square-footage of the gross building floor area.

The trip generation calculations show that the proposed development is projected to generate 46 morning peak hour trips, 50 evening peak hour trips, and 344 average weekday trips. The trip generation estimates for the proposed development are summarized in Table 3. Detailed trip generation calculations are included in the technical appendix to this report.

Table 3: Trip Generation Summary (Proposed Development)

	$\begin{aligned} & \text { ITE } \\ & \text { Code } \end{aligned}$	Size/Rate	Morning Peak Hour			Evening Peak Hour			Weekday Total
			Enter	Exit	Total	Enter	Exit	Total	
Manufacturing	140	52,600 SF	25	8	33	11	24	35	206
Warehouse	150	79,000 SF	10	3	13	4	11	15	138
Total			35	11	46	15	35	50	344

Although the aforementioned land uses reflect what the applicant is proposing for development, City of Tualatin staff have requested that analysis be based using trip generation data from land use code 110, General Light Industrial. The reason for using this land use code is to reflect potential, conservative impacts to the transportation system which may occur due to a high traffic generating tenant(s) that could lease space within the proposed development.

Utilizing data from land use code 110, based on the square-footage of the gross building floor area, the proposed development could generate up to 92 morning peak hour trips, 83 evening peak hour trips, and 652 average weekday trips. The trip generation estimates for the proposed development, using data from land use code 110, are summarized in Table 4. Detailed trip generation calculations are included in the technical appendix to this report.

[^0]Table 4: Trip Generation Summary (Based on Land Use Code 110)

	ITE Code	Size/Rate	Morning Peak Hour			Evening Peak Hour			Weekday Total
			Enter	Exit	Total	Enter	Exit	Total	
General Light Industrial									
Total Trips	110	131,600 SF	81	11	92	11	72	83	652
Truck Trips	-	20\%	16	2	18	2	15	17	130
Standard Vehicle Trips	-	-	65	9	74	9	57	66	522

For the remainder of this study, analyses are performed based on the trip generation presented in Table 4.

Truck Trips

Per the Trip Generation Handbook², relevant data pertaining to truck trip generation is provided for land use codes 130, Industrial Park, 150, Warehousing, and 152, High-Cube Warehouse/Distribution Center. For land use code 130, truck trips accounted for an average of approximately 13 percent of site trips generated, while for code 150 were approximately 20 percent of site trips were considered truck trips. For land use code 152, the majority of truck trips generated were noted to typically occur during off-peak hours, but on average would account for between 9 to 29 percent of peak hour traffic. No specific data pertaining to manufacturing or general light industrial uses is available.

For the purposes of simplicity, it is assumed that approximately 20 percent of the total site trip generation may consist of truck trips. Accordingly, the proposed development is projected to generate 18 morning peak hour truck trips, 17 evening peak hour truck trips, and 130 average weekday truck trips, based on land use code 110. See Table 4 for details regarding the truck trip generation.

Given the surrounding site vicinity is predominately industrial in character, the nearby transportation system was constructed accordingly to best serve the needs of existing and future industrial development. As such, it is expected that a significant majority of truck trips would utilize SW Herman Road, SW Teton Avenue, and SW Tualatin Road to access the major transportation corridors of SW Tualatin-Sherwood Road and SW 124 $4^{\text {th }}$ Avenue. From SW Tualatin-Sherwood Road and SW $124^{\text {th }}$ Avenue, access to regional transportation facilities, such as SW Pacific Highway, Interstate 5, and Interstate 205, are available.

[^1]
Trip Distribution

Based on correspondence and input from City of Tualatin staff, the following trip distribution was estimated and used for analysis:

Standards Vehicle Trips

- Approximately 40 percent of site trips will travel to/from the east along SW Herman Road;
- Approximately 25 percent of site trips will travel to/from the west along SW Herman Road;
- Approximately 25 percent of site trips will travel from the south along SW Teton Avenue; and
- Approximately 10 percent of site trips will travel to the north along SW Teton Avenue.

Truck Trips

- Approximately 35 percent of site trips will travel to/from the east along SW Herman Road;
- Approximately 30 percent of site trips will travel to/from the west along SW Herman Road;
- Approximately 30 percent of site trips will travel from the south along SW Teton Avenue; and
- Approximately 5 percent of site trips will travel to the north along SW Teton Avenue.

The trip distribution and assignment for the site trips generated by the proposed development during the morning and evening peak hours is shown in Figure 2 through Figure 4 . Figure 2 presents site trip assignment for standard vehicles, Figure 3 presents site trip assignment for trucks, and Figure 4 presents site trip assignment for the total trips generated.

Traffic Volumes

Existing Conditions

Traffic counts were conducted at the study intersections on the following days:

- Tuesday, September 11th , 2018, from 7:00 AM to 9:00 AM;
- Thursday, August 16 ${ }^{\text {th }}, 2018$, from 4:00 PM to 6:00 PM; and
- Thursday, May $7^{\text {th }}, 2020$, from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM.

Data corresponding to each intersection's respective morning and evening peak hour was used for analysis.
For the collected 2018 count data, in order to reflect existing year 2020 conditions, a compounded growth rate of two percent per year over a two-year period was applied to the traffic volumes.

Traffic counts at the site access intersection along SW Herman Road were collected on May $7^{\text {th }}, 2020$, while the COVID-19 viral pandemic was considered a significant public health concern throughout the State of Oregon. Subsequently, traffic volumes had been significantly depressed statewide as of mid-March and into May. In order to reflect normal travel conditions at the intersection, adjustment factors for the morning and evening peak hours were calculated utilizing the count data collected prior to March 2020. The adjustment factors were calculated utilizing the following methodology:

- Eastbound and westbound volumes along SW Herman Road were balanced with the study intersections of SW Teton Avenue and SW Tualatin Road at SW Herman Road.
- The pre-COVID-19 balanced volumes along SW Herman Road were compared to the collected access intersection volumes. Based on the difference in volumes along SW Herman Road, adjustments factors of 2.3980 and 1.6870 were calculated for the morning and evening peak hours, respectively.
- The adjustment factors were applied to the site access intersection volumes, as a whole.

Figure 5 on page 16 shows the existing traffic volumes at the study intersections during the morning and evening peak hours.

Background Conditions

To provide an analysis of the impact of the proposed development on the nearby transportation facilities, an estimate of future traffic volumes is required. In order to calculate the future traffic volumes, a compounded growth rate of two percent per year for an assumed buildout condition of two years was applied to the measured existing traffic volumes to approximate year 2022 background conditions.

Page 14 of 26

In addition to the traffic volume growth described above, trips associated with two in-process developments within the site vicinity, that are currently approved but not yet fully constructed or occupied, were added to the existing volumes in addition to the calculated volume growth. The following projects were assumed to be completed and occupied by year 2022:

- LMC Teton Building (19200 SW Teton Avenue); and
- Tualatin City Operations Site (10699 SW Herman Road).

A figure depicting trip assignment associated with the in-process developments is included within the appendix to this report.

Figure 6 on page 17 shows the background traffic volumes at the study intersections during the morning and evening peak hours.

Buildout Conditions

Peak hour trips calculated to be generated by the proposed development, as described earlier within the Site Trips section, were added to the projected year 2022 background traffic volumes to obtain the expected 2022 buildout volumes. Figure 7 on page 18 shows the buildout traffic volumes at the study intersections during the morning and evening peak hours.

Safety Analysis

Crash History Review

Using data obtained from ODOT's Crash Analysis and Reporting Unit, a review was performed of the most recent five years of available crash data at the study intersections (January 2013 through December 2017). The crash data was evaluated based on the number of crashes, the type of collisions, the severity of the collisions, and the resulting crash rate for each intersection. Crash rates provide the ability to compare safety risks at different intersections by accounting for both the number of crashes that have occurred during the study period and the number of vehicles that typically travel through the intersection. Crash rates were calculated under the common assumption that traffic counted during the evening peak hour represents approximately ten percent of annual average daily traffic (AADT) at each intersection. Crash rates in excess of 1.00 crashes per million entering vehicles (CMEV) may be indicative of design deficiencies and therefore require a need for further investigation and possible mitigation.

With regard to crash severity, ODOT classifies crashes in the following categories:

- Property Damage Only (PDO);
- Possible Injury - Complaint of Pain (Injury C);
- Non-Incapacitating Injury (Injury B);
- Incapacitating Injury - Bleeding, Broken Bones (Injury A); and
- Fatality or Fatal Injury.

Table 5 provides a summary of crash types while Table 6 summarizes crash severities and rates for each of the study intersections. Detailed crash reports are included in the technical appendix to this report.

	Intersection	Crash Type									Total Crashes
		Rear End	Turn	Angle	Fixed Object	Side Swipe	Head On	Other	Ped	Bike	
1	SW Teton Avenue at SW Herman Road	4	2	2	1	0	0	0	0	1	10
2	Site Access at SW Herman Road	0	0	0	0	0	0	0	0	0	0
3	SW Tualatin Road at SW Herman Road	3	5	0	0	0	0	0	0	0	8

Table 6: Crash Severity and Rate Summary

	Intersection	Crash Severity					Total Crashes	AADT	Crash Rate
		PDO	C	B	A	Fatal			
1	SW Teton Avenue at SW Herman Road	6	2	2	0	0	10	17,040	0.32
2	Site Access at SW Herman Road	0	0	0	0	0	0	8,530	0.00
3	SW Tualatin Road at SW Herman Road	2	4	2	0	0	8	18,870	0.23

As detailed in Table 5, there was one crash at the intersection of SW Teton Avenue at SW Herman Road that involved a vulnerable roadway user, specifically a bicyclist. The crash occurred when the driver of an eastbound right-turning passenger car collided with a southbound bicyclist who was traveling on the road. Travel conditions were foggy and during the night (with streetlights present) whereby visibility was poor. The bicyclist sustained injuries consistent with Injury C classification.

Based on the review of the crash data, no significant trends or crash patterns were identified at any of the study intersections that were indicative of safety concerns. Accordingly, no safety mitigation is recommended per the crash data analysis.

Sight Distance Evaluation

Sight distance was measured at the site access intersection along SW Herman Road and evaluated in accordance with the standards established in A Policy of Geometric Design of Highways and Streets ${ }^{3}$. According to AASHTO, the driver's eye is assumed to be 15 feet from the near edge of the nearest travel lane of the intersecting street and at a height of 3.5 feet above the minor-street approach pavement. The vehicle driver's eye height along the major-street approach is assumed to be 3.5 feet above the cross-street pavement.

Based on the posted speed of 35 mph , the minimum recommended intersection sight distance is 390 feet to the east and west of the access along SW Herman Road. Sight distances were measured to be in excess of 400 feet to the east and west of the access intersection. Therefore, adequate sight distance is available at the site access to ensure safe and efficient operation of the intersection. Accordingly, no sight distance related mitigation is necessary or recommended.

Warrant Analysis

Left-turn lane and preliminary traffic signal warrants were examined for the site access intersection along SW Herman Road.

Left-Turn Lane Warrants

A left-turn refuge lane is primarily a safety consideration for the major-street, removing left-turning vehicles from the through traffic stream. The left-turn lane warrants used were developed from the National Cooperative Highway Research Project's (NCHRP) Report 457. Turn lane warrants were evaluated based on the number of advancing and opposing vehicles as well as the number of turning vehicles, the travel speed, and the number of through lanes.

Left-turn lane warrants are currently met for the westbound approach of the site access intersection along SW Herman Road during the morning peak hour. However, warrants are met under existing conditions and the proposed development will not add left-turning traffic on the westbound approach of the intersection. Therefore, no new left-turn lane is necessary or recommended on this intersection approach as part of the proposed development.

Under year 2022 buildout conditions, the left-turn lane warrants are projected to be met for the eastbound approach at the site access intersection during the morning peak hour. It should be noted that left-turn lane warrants are only projected to be met assuming the proposed development generates trips at levels similar to that of ITE Code 110, General Light Industrial, and will not be met if the proposed use generates trips at levels comparable to the proposed warehouse/manufacturing use.

Preliminary Traffic Signal Warrants

Preliminary traffic signal warrants were examined for the site access intersection to determine whether the installation of a new traffic signal will be warranted at the intersection upon completion of the proposed development. Due to insufficient main and side-street traffic volumes, traffic signal warrants are not projected to be met at the site access intersection under any of the analysis scenarios.

[^2]Detailed warrant analyses for are included in the technical appendix to this report.

Turning Movement Analysis

At the direction of City of Tualatin staff, a turning movement analysis was conducted depicting vehicle ingress and egress from the project site via the proposed access driveway. The turning movement analysis was conducted using AutoTurn software and referencing an AASHTO "WB-67" design vehicle. At a length of approximately 70 feet, the "WB-67" design vehicle is considered one of the largest tractor-trailer vehicle types that may travel to/from the site. Diagrams depicting analysis scenarios are included within the appendix to this report and are listed below:

- Figure B - Eastbound Site Ingress
- Figure C - Westbound Site Ingress
- Figure D - Westbound Site Egress
- Figure E - Eastbound Site Egress

Based on the turning movement analysis (as depicted in the above listed figures), no issues were found with regard to site ingress from the west and site egress. For site ingress from the east, the design vehicle will need to encroach onto the opposing travel lane along SW Herman Road in order to conduct the applicable turning movement without traversing over curbs and/or off-road.

Operational Analysis

A capacity and delay analysis was conducted for each of the study intersections per the unsignalized intersection analysis methodologies in the Highway Capacity Manual ${ }^{4}$ (HCM). Intersections are generally evaluated based on the average control delay experienced by vehicles and are assigned a grade according to their operation. The level of service (LOS) of an intersection can range from LOS A, which indicates very little or no delay experienced by vehicles, to LOS F, which indicates a high degree of congestion and delay. The volume-to-capacity (v / c) ratio is a measure that compares the traffic volumes (demand) against the available capacity of an intersection.

Performance Standards

The City of Tualatin requires intersections to operate at a minimum LOS E or better. For both LOS and delay related to the analysis of unsignalized intersections, the reported result applies to the worst minor-street approach lane.

Delay \& Capacity Analysis

The v / c, delay, and LOS results of the capacity analysis are shown in Table 7 for the morning and evening peak hours. Detailed calculations as well as tables showing the relationship between delay and LOS are included in the appendix to this report.

[^3]Table 7: Intersection Capacity Analysis Summary

	Morning Peak Hour			Evening Peak Hour		
	LOS	Delay (s)	v/c	LOS	Delay (s)	v/c
1 SW Teton Avenue at SW Herman Road						
2020 Existing Conditions	B	18	-	B	17	-
2022 Background Conditions	C	20	-	B	19	-
2022 Buildout Conditions	C	21	-	B	19	-
2 Site Access/Powder Court at SW Herman Road						
2020 Existing Conditions	C	18	0.16	D	31	0.60
2022 Background Conditions	C	20	0.19	E	36	0.68
2022 Buildout Conditions	C	25	0.24	E	45	0.76
3 SW Tualatin Road at SW Herman Road						
2020 Existing Conditions	C	27	-	B	13	-
2022 Background Conditions	C	33	-	B	13	-
2022 Buildout Conditions	C	37	-	B	13	-

BOLDED results indicate operation above acceptable jurisdictional standards.

Based on the results of the operational analysis, all study intersections are currently operating acceptably per City of Tualatin standards and are projected to continue operating acceptably through the 2022 buildout year of the site. No operational mitigation is necessary or recommended at these intersections.

Conclusions

No significant trends or crash patterns were identified at any of the study intersections that were indicative of safety concerns. Accordingly, no safety mitigation is recommended per the crash data analysis.

Adequate sight distance is available at the site access to ensure safe and efficient operation of the intersection.
Left-turn lane warrants are currently met for the westbound approach of the site access intersection along SW Herman Road during the morning peak hour. However, warrants are met under existing conditions and the proposed development will not add left-turning traffic on the westbound approach of the intersection. Therefore, a left-turn lane for this intersection approach is not necessary or recommended as part of the proposed development.

Under year 2022 buildout conditions, the left-turn lane warrants are projected to be met for the eastbound approach at the site access intersection during the morning peak hour.

Due to insufficient main and side-street traffic volumes, traffic signal warrants are not projected to be met at the site access intersection under any of the analysis scenarios.

Based on a turning movement analysis, no issues were found with regard to site ingress from the west and site egress to the east. For site ingress from the east and site egress to the west, the tractor-trailer style of vehicles may need to encroach onto the opposing travel lane along SW Herman Road in order to conduct the applicable turning movement without traversing over curbs and/or off-road.

All study intersections are currently operating acceptably per City of Tualatin standards and are projected to continue operating acceptably through the 2022 buildout year of the site.

Appendix

TRIP GENERATION CALCULATIONS

Land Use: General Light Industrial
Land Use Code: 110
Setting/Location General Urban/Suburban
Variable: 1,000 Square Feet of Gross Floor Area
Variable Quantity: 131.6

AM PEAK HOUR

Trip Rate: 0.70

	Enter	Exit	Total
Directional Distribution	88%	12%	
Trip Ends	$\mathbf{8 1}$	$\mathbf{1 1}$	$\mathbf{9 2}$

WEEKDAY

Trip Rate: 4.96

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{3 2 6}$	$\mathbf{3 2 6}$	$\mathbf{6 5 2}$

PM PEAK HOUR
Trip Rate: 0.63

	Enter	Exit	Total
Directional Distribution	13%	87%	
Trip Ends	$\mathbf{1 1}$	$\mathbf{7 2}$	$\mathbf{8 3}$

SATURDAY

Trip Rate: 1.99

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 3 1}$	$\mathbf{1 3 1}$	$\mathbf{2 6 2}$

TRIP GENERATION CALCULATIONS

Land Use: Manufacturing
Land Use Code: 140
Setting/Location: General Urban/Suburban
Variable: 1,000 Square Feet
Variable Quantity: 52.6

AM PEAK HOUR
Trip Rate: 0.62

	Enter	Exit	Total
Directional Distribution	77%	23%	
Trip Ends	$\mathbf{2 5}$	$\mathbf{8}$	33

WEEKDAY
Trip Rate: 3.93

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 0 3}$	$\mathbf{1 0 3}$	$\mathbf{2 0 6}$

PM PEAK HOUR
Trip Rate: 0.67

	Enter	Exit	Total
Directional Distribution	31%	69%	
Trip Ends	11	$\mathbf{2 4}$	35

SATURDAY

Trip Rate: 6.42

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 6 9}$	$\mathbf{1 6 9}$	$\mathbf{3 3 8}$

TRIP GENERATION CALCULATIONS

Land Use: Warehousing
Land Use Code: 150
Variable: 1,000 Square Feet
Variable Quantity: 79

AM PEAK HOUR

Trip Rate: 0.17

	Enter	Exit	Total
Directional Distribution	77%	23%	
Trip Ends	$\mathbf{1 0}$	$\mathbf{3}$	$\mathbf{1 3}$

WEEKDAY
Trip Rate: 1.74

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{6 9}$	$\mathbf{6 9}$	$\mathbf{1 3 8}$

Comments:

LOCATION: SW Tualatin Rd -- SW Herman Rd	QC JOB \#: 14768947
CITY/STATE: Washington, OR	DATE: Tue, Sep 112018

QC JOB \#: 14768938
CITY/STATE: Tualatin, OR DATE: Thu, Aug 162018

TRAFFIC VOLUMES
In-Process Development Trips
AM \& PM Peak Hours

Figure A

CDS380

05/06/2020

City of tualatin, washington count
oregon.. department of transportation - transportation development division
transportation data section - Crash anaylysis and reporting unit
URban non-System crash listing
HERMAN RD at TETON AVE, City of Tualatin, Washington County, 01/01/2013 to 12/31/2017
1-5 of 10 Crash records shown.

CDS380

05/06/2020

City of tualatin, washington county
oregon.. department of transportation - transportation development division
transportation data section - Crash anaylysis and reporting unit
URbAN Non-System Crash listing
herman rd at teton ave, city of Tualatin, Washington County, 01/01/2013 to 12/31/2017
6-9 of 10 Crash records shown.

CDS380

05/06/2020
City of tualatin, washington county

HERMAN RD at tUALATIN RD, City of Tualatin, washington County, 01/01/2013 to 12/31/2017

$$
\text { 6-8 of } 8 \text { Crash records shown. }
$$

Left-Turn Lane Warrant Analysis

Project: Lu Pacific Development
Intersection: Site Access at SW Herman Road
Date: 7/17/2020
Scenario: 2022 Buildout Conditions - AM Peak Hour (EB)

2-lane roadway (English)
INPUT

Variable	Value
$5^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	14%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	394
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	409

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	332

Guidance for determining the need for a major-road left-turn bay:
Left-turn treatment warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Lu Pacific Development
Intersection: Site Access at SW Herman Road
Date: 7/17/2020
Scenario: 2022 Existing Conditions - AM Peak Hour (WB)

2-lane roadway (English)
INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	15%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	405
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh $/ \mathrm{h}:$	317

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	355

Guidance for determining the need for a major-road left-turn bay:
Left-turn treatment warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, $\mathrm{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathrm{s}:$	1.9

Left-Turn Lane Warrant Analysis

Project: Lu Pacific Development
Intersection: Site Access at SW Herman Road
Date: 7/17/2020
Scenario: 2022 Buildout Conditions - PM Peak Hour (EB)

2-lane roadway (English)
INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	1%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	446
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh/h:	291

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	1142

Guidance for determining the need for a major-road left-turn bay:
Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Left-Turn Lane Warrant Analysis

Project: Lu Pacific Development
Intersection: Site Access at SW Herman Road
Date: 7/17/2020
Scenario: 2022 Buildout Conditions - PM Peak Hour (WB)

2-lane roadway (English)
INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	35
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	6%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	309
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh/h:	440

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	479

Guidance for determining the need for a major-road left-turn bay:
Left-turn treatment NOT warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

Traffic Signal Warrant Analysis

Project:	Lu Pacific Development				
Date:	7/17/2020				
Scenario: 2022 Buildout Conditions					
Major Street:	SW Herman Road		Minor Street:	Access Driveway	
Number of Lanes:	1		Number of Lanes:	1	
PM Peak Hour Volumes:	755		PM Peak Hour Volumes:	140	
Warrant Used:					
	70 percent of standard warrants used due to 85th percentile speed in excess				
Number of Lanes for Moving Traffic on Each Approach:		ADT on Major St. (total of both approaches)		ADT on Minor St. (higher-volume approach)	
WARRANT 1, CONDITION A		100\%	70\%	100\%	70\%
Major St.	Minor St.	Warrants	Warrants	Warrants	Warrants
1	1	8,850	6,200	2,650	1,850
2 or more	1	10,600	7,400	2,650	1,850
2 or more	2 or more	10,600	7,400	3,550	2,500
1	2 or more	8,850	6,200	3,550	2,500
WARRANT 1, CONDITION B					
1	1	13,300	9,300	1,350	950
2 or more	1	15,900	11,100	1,350	950
2 or more	2 or more	15,900	11,100	1,750	1,250
1	2 or more	13,300	9,300	1,750	1,250
		Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume			
		Approach	Minimum	Is Signal	
		Volumes	Volumes	Warrant Met?	
Warrant 1					
Condition A: Minimum Vehicular Volume					
Major Street		7,550	8,850		
Minor Street*		1,400	2,650	No	
Condition B: Interruption of Continuous Traffic					
Major Street		7,550	13,300		
Minor Street*		1,400	1,350	No	
Combination Warrant					
Major Street		7,550	10,640		
Minor Street*		1,400	2,120	No	

Note: Minor street right-turning traffic volumes reduced by 25%.

\section*{| AUTOTURN ANALYSIS |
| :--- |
| Eastbound Site Ingress |
 }

Notes

Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

| | | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection													
Int Delay, s/veh	5.6												
Movement EBL	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			\uparrow			*			¢		
Traffic Vol, veh/h	0	395	12	17	265	0	49	0	113	2	0	0	
Future Vol, veh/h	0	395	12	17	265	0	49	0	113	2	0	0	
Conflicting Peds, \#/hr	2	0	1	1	0	2	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized		-	None	-	-	None	-	-	None	-	-	None	
Storage Length		-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#		0	-	-	0	-	-	0	-	-	0	-	
Grade, \%		0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	72	72	72	72	72	72	72	72	72	72	72	72	
Heavy Vehicles, \%		4	4	16	16	16	2	2	2	0	0	0	
Mvmt Flow		549	17	24	368	0	68	0	157	3	0	0	

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

	\rangle	\rightarrow		\dagger	-		4	4			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	\uparrow	「	${ }^{*}$	\uparrow	${ }^{7}$	\%	$\hat{\square}$		${ }^{7}$	$\hat{\square}$	
Traffic Volume (veh/h)	7	307	310	69	293	26	284	140	32	19	222	7
Future Volume (veh/h)	7	307	310	69	293	26	284	140	32	19	222	7
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1707	1707	1707	1796	1796	1796	1767	1767	1767	1870	1870	1870
Adj Flow Rate, veh/h	8	353	0	79	337	0	326	161	37	22	255	8
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, \%	13	13	13	7	7	7		9	9	2	2	2
Cap, veh/h	312	440		324	564		403	393	90	416	356	11
Arrive On Green	0.01	0.26	0.00	0.07	0.31	0.00	0.11	0.28	0.28	0.03	0.20	0.20
Sat Flow, veh/h	1626	1707	1447	1711	1796	1522	1682	1389	319	1781	1803	57
Grp Volume(v), veh/h	8	353	0	79	337	0	326	0	198	22	0	263
Grp Sat Flow(s),veh/h/ln	1626	1707	1447	1711	1796	1522	1682	,	1708	1781	0	1860
Q Serve(g_s), s	0.2	9.5	0.0	1.6	7.8	0.0	5.5	0.0	4.6	0.5	0.0	6.5
Cycle Q Clear (g_c), s	0.2	9.5	0.0	1.6	7.8	0.0	5.5	0.0	4.6	0.5	0.0	6.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.19	1.00		0.03
Lane Grp Cap (c), veh/h	312	440		324	564		403	0	483	416	0	367
V/C Ratio(X)	0.03	0.80		0.24	0.60		0.81	0.00	0.41	0.05	0.00	0.72
Avail Cap(c_a), veh/h	460	625		384	658		403	,	660	550	0	700
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.5	17.1	0.0	12.6	14.2	0.0	16.1	0.0	14.3	15.0	0.0	18.4
Incr Delay (d2), s/veh	0.0	5.0	0.0	0.4	1.1	0.0	11.6	0.0	0.6	0.1	0.0	2.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In	0.1	3.6	0.0	0.5	2.8	0.0	3.6	0.0	1.6	0.2	0.0	2.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	13.5	22.1	0.0	13.0	15.3	0.0	27.7	0.0	14.9	15.1	0.0	21.1
LnGrp LOS	B	C		B	B		C	A	B	B	A	C
Approach Vol, veh/h		361	A		416	A		524			285	
Approach Delay, s/veh		21.9			14.9			22.8			20.6	
Approach LOS		C			B			C			C	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	5.8	18.4	7.8	17.2	10.0	14.2	5.0	19.9				
Change Period ($Y+R \mathrm{Rc}$), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	19.0	5.0	18.0	5.5	18.5	5.0	18.0				
Max Q Clear Time (g_c+1), s	2.5	6.6	3.6	11.5	7.5	8.5	2.2	9.8				
Green Ext Time (p_c), s	0.0	0.8	0.0	1.0	0.0	1.0	0.0	1.2				
Intersection Summary												
HCM 6th Ctrl Delay			20.1									
HCM 6th LOS			C									
Notes												

Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection													
Int Delay, s/veh	1.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			\uparrow			*			\dagger		
Traffic Vol, veh/h	5	263	75	65	377	2	20	0	27	0	0	5	
Future Vol, veh/h	5	263	75	65	377	2	20	0	27	0	0	5	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84	
Heavy Vehicles, \%	23	23	23	10	10	10	42	42	42	50	50	50	
Mvmt Flow	6	313	89	77	449	2	24	0	32	0	0	6	

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

	$\stackrel{ }{*}$	\rightarrow		7	\checkmark	4	4	\dagger	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	F	${ }^{7}$	\uparrow	F	\%	\uparrow		\%	1	
Traffic Volume (veh/h)	6	322	318	44	343	21	312	250	41	26	127	16
Future Volume (veh/h)	6	322	318	44	343	21	312	250	41	26	127	16
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1841	1841	1841	1796	1796	1796	1826	1826	1826	1796	1796	1796
Adj Flow Rate, veh/h	7	370	0	51	394	0	359	287	47	30	146	18
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, \%	4	4	4	7	7	7	5	5	5	7	7	7
Cap, veh/h	282	478		323	544		464	381	62	297	251	31
Arrive On Green	0.01	0.26	0.00	0.05	0.30	0.00	0.12	0.25	0.25	0.03	0.16	0.16
Sat Flow, veh/h	1753	1841	1560	1711	1796	1522	1739	1530	251	1711	1563	193
Grp Volume(v), veh/h	7	370	0	51	394	0	359	0	334	30	0	164
Grp Sat Flow(s),veh/h/n	1753	1841	1560	1711	1796	1522	1739	0	1780	1711	0	1756
Q Serve(g_s), s	0.1	8.3	0.0	0.9	8.7	0.0	5.5	0.0	7.7	0.6	0.0	3.9
Cycle Q Clear(g_c), s	0.1	8.3	0.0	0.9	8.7	0.0	5.5	0.0	7.7	0.6	0.0	3.9
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.14	1.00		0.11
Lane Grp Cap(c), veh/h	282	478		323	544		464	0	443	297	0	282
V/C Ratio(X)	0.02	0.77		0.16	0.72		0.77	0.00	0.75	0.10	0.00	0.58
Avail Cap(c_a), veh/h	462	744		425	726		464	0	759	430	0	729
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	12.5	15.3	0.0	11.7	13.9	0.0	15.1	0.0	15.5	14.8	0.0	17.3
Incr Delay (d2), s/veh	0.0	2.7	0.0	0.2	2.4	0.0	7.9	0.0	2.6	0.1	0.0	1.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	2.9	0.0	0.3	3.1	0.0	3.4	0.0	2.9	0.2	0.0	1.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	12.5	18.0	0.0	11.9	16.3	0.0	23.0	0.0	18.1	15.0	0.0	19.2
LnGrp LOS	B	B		B	B		C	A	B	B	A	B
Approach Vol, veh/h		377	A		445	A		693			194	
Approach Delay, s/veh		17.9			15.8			20.6			18.6	
Approach LOS		B			B			C			B	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	6.1	15.6	6.8	16.1	10.0	11.6	4.9	18.0				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	19.0	5.0	18.0	5.5	18.5	5.0	18.0				
Max Q Clear Time (g_c+11), s	2.6	9.7	2.9	10.3	7.5	5.9	2.1	10.7				
Green Ext Time (p_c), s	0.0	1.3	0.0	1.2	0.0	0.6	0.0	1.3				
Intersection Summary												
HCM 6th CtrI Delay			18.5									
			B									

Notes

Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection													
Int Delay, s/veh	6.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\dagger			${ }_{\text {¢ }}$			¢			\$		
Traffic Vol, veh/h	0	428	12	18	286	0	51	0	118	2	0	0	
Future Vol, veh/h	0	428	12	18	286	0	51	0	118	2	0	0	
Conflicting Peds, \#hr	2	0	1	1	0	2	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-		None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	72	72	72	72	72	72	72	72	72	72	72	72	
Heavy Vehicles, \%	4	4	4	16	16	16	2	2	2	0	0	0	
Mvmt Flow	0	594	17	25	397	0	71	0	164	3	0	0	

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

	$\stackrel{ }{*}$	\rightarrow		\dagger			4	\dagger		\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	\uparrow	「	\%	\uparrow	「	${ }^{*}$	$\hat{\square}$		${ }_{1}$	$\hat{\square}$	
Traffic Volume (veh/h)	7	329	310	72	295	27	284	140	54	26	222	7
Future Volume (veh/h)	7	329	310	72	295	27	284	140	54	26	222	7
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1707	1707	1707	1796	1796	1796	1767	1767	1767	1870	1870	1870
Adj Flow Rate, veh/h	8	378	0	83	339	0	326	161	62	30	255	8
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, \%	13	13	13	7	7	7	9	9	9	2	2	2
Cap, veh/h	319	458		316	585		401	336	129	393	351	11
Arrive On Green	0.01	0.27	0.00	0.07	0.33	0.00	0.12	0.28	0.28	0.03	0.19	0.19
Sat Flow, veh/h	1626	1707	1447	1711	1796	1522	1682	1213	467	1781	1803	57
Grp Volume(v), veh/h	8	378	0	83	339	0	326	0	223	30	0	263
Grp Sat Flow(s),veh/h/ln	1626	1707	1447	1711	1796	1522	1682	0	1681	1781	0	1860
Q Serve(g_s), s	0.2	10.6	0.0	1.7	8.0	0.0	5.9	0.0	5.6	0.7	0.0	6.8
Cycle Q Clear(g_c), s	0.2	10.6	0.0	1.7	8.0	0.0	5.9	0.0	5.6	0.7	0.0	6.8
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.28	1.00		0.03
Lane Grp Cap(c), veh/h	319	458		316	585		401	0	465	393	0	362
V/C Ratio(X)	0.03	0.82		0.26	0.58		0.81	0.00	0.48	0.08	0.00	0.73
Avail Cap(c_a), veh/h	461	603		367	634		401	0	626	507	0	660
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.6	17.5	0.0	12.8	14.3	0.0	16.5	0.0	15.4	15.4	0.0	19.2
Incr Delay (d2), s/veh	0.0	7.0	0.0	0.4	1.1	0.0	12.0	0.0	0.8	0.1	0.0	2.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.1	4.2	0.0	0.6	2.9	0.0	3.8	0.0	1.9	0.2	0.0	2.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	13.6	24.6	0.0	13.3	15.4	0.0	28.4	0.0	16.1	15.5	0.0	22.0
LnGrp LOS	B	C		B	B		C	A	B	B	A	C
Approach Vol, veh/h		386	A		422	A		549			293	
Approach Delay, s/veh		24.3			15.0			23.4			21.4	
Approach LOS		C			B			C			C	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	6.2	18.6	8.0	18.2	10.4	14.4	5.0	21.1				
Change Period ($Y+R \mathrm{Rc}$), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	19.0	5.0	18.0	5.9	18.1	5.0	18.0				
Max Q Clear Time (g_c+1), s	2.7	7.6	3.7	12.6	7.9	8.8	2.2	10.0				
Green Ext Time (p_c), s	0.0	0.9	0.0	1.0	0.0	0.9	0.0	1.2				
Intersection Summary												
HCM 6th Ctrr Delay			21.1									
HCM 6th LOS			C									
Notes												

Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

	4	\rightarrow	\%	7	\checkmark	4	4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	F	${ }^{7}$	\uparrow	$\stackrel{7}{ }$	${ }^{7}$	\uparrow		\%	\uparrow	
Traffic Volume (veh/h)	6	324	318	63	362	28	312	250	44	27	127	16
Future Volume (veh/h)	6	324	318	63	362	28	312	250	44	27	127	16
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1841	1841	1841	1796	1796	1796	1826	1826	1826	1796	1796	1796
Adj Flow Rate, veh/h	7	372	0	72	416	0	359	287	51	31	146	18
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, \%	4	4	4	7	7	7	5	5	5	7	7	7
Cap, veh/h	276	475		337	565		459	376	67	290	258	32
Arrive On Green	0.01	0.26	0.00	0.07	0.31	0.00	0.12	0.25	0.25	0.04	0.17	0.17
Sat Flow, veh/h	1753	1841	1560	1711	1796	1522	1739	1509	268	1711	1563	193
Grp Volume(v), veh/h	7	372	0	72	416	0	359	0	338	31	0	164
Grp Sat Flow(s),veh/h/n	1753	1841	1560	1711	1796	1522	1739	0	1777	1711	0	1756
Q Serve(g_s), s	0.1	8.6	0.0	1.4	9.5	0.0	5.5	0.0	8.1	0.7	0.0	4.0
Cycle Q Clear(g_c), s	0.1	8.6	0.0	1.4	9.5	0.0	5.5	0.0	8.1	0.7	0.0	4.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.15	1.00		0.11
Lane Grp Cap (c), veh/h	276	475		337	565		459	0	443	290	0	290
V/C Ratio(X)	0.03	0.78		0.21	0.74		0.78	0.00	0.76	0.11	0.00	0.57
Avail Cap(c_a), veh/h	450	721		411	703		459	0	734	416	0	706
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	12.9	15.9	0.0	11.8	14.1	0.0	15.7	0.0	16.0	15.2	0.0	17.7
Incr Delay (d2), s/veh	0.0	3.2	0.0	0.3	3.1	0.0	8.5	0.0	2.8	0.2	0.0	1.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	3.2	0.0	0.4	3.6	0.0	3.6	0.0	3.0	0.2	0.0	1.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	12.9	19.0	0.0	12.1	17.2	0.0	24.3	0.0	18.8	15.3	0.0	19.4
LnGrp LOS	B	B		B	B		C	A	B	B	A	B
Approach Vol, veh/h		379	A		488	A		697			195	
Approach Delay, s/veh		18.9			16.4			21.6			18.7	
Approach LOS		B			B			C			B	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	6.1	16.0	7.5	16.4	10.0	12.1	4.9	19.0				
Change Period ($Y+R \mathrm{Rc}$), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	19.0	5.0	18.0	5.5	18.5	5.0	18.0				
Max Q Clear Time (g_c +11), s	2.7	10.1	3.4	10.6	7.5	6.0	2.1	11.5				
Green Ext Time (p_c), s	0.0	1.3	0.0	1.2	0.0	0.6	0.0	1.3				
Intersection Summary												
HCM 6th Ctrl DelayHCM 6th LOS			19.3									
			B									

Notes

Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

[^0]: ${ }^{1}$ Institute of Transportation Engineers (ITE), Trip Generation Manual, 100 Edition, 2017.

[^1]: ${ }^{2}$ Institute of Transportation Engineers (ITE), Trip Generation Handbook, 3 rd Edition, 2014.

[^2]: ${ }^{3}$ American Association of State Highway and Transportation Officials (AASHTO), A Policy on Geometric Design of Highways and Streets, $6^{\text {th }}$ Edition, 2011.

 8/31/2020
 Transportation Impact Study
 Page 21 of 26

[^3]: ${ }^{4}$ Transportation Research Board, Highway Capacity Manual, 6th Edition, 2016.

