CITY OF TUALATIN
Community Development Department-Planning Division Land Use Application -Type II

PROPOSAL NAME Four-S Corporation Warehouse

PROPOSAL SUMMARY (Brief description)
Construction of distribution warehouse and related site development

PROPERTY INFORMATION

Location (address if available): $\mathbf{1 2 2 0 0}$ SW Myslony Street
Tax Map \& Lot \#(s): $\mathbf{2 S 1} 22$ C TL 1600 Planning District: \mathbf{M}

Total site size: $\mathbf{5 . 2 8}$ acres ($\mathbf{3 . 5}$ acres subject project area)
\square Developed \boldsymbol{B} Undeveloped

APPLICANT/CONTACT INFORMATION

Applicant or Primary Contact Name: Skip Stanaway, Four-S Corporation
Mailing Address: 16316 SW $72^{\text {nd }}$ Avenue
City/State: Portland, OR
Zip: 97224
Phone: 503.905.2245 \qquad Email: skipstanaway@gmail.com

Applicant's Signature:

Date:

I hereby acknowledge that I have read this application and understand the requirements for approving and denying the application, that the information provided is correct, that I am the owner or authorized agent of the owner, and that plans submitted are in compliance with the city of Tualatin Development (TDC) and Municipal (TMC) Codes.

PROPERTY OWNER/DEED HOLDER INFORMATION (Attach list if more than one)

Name: Four-S Corporation

Mailing Address: 16316 SW $72^{\text {nd }}$ Avenue
City/State: Portland, OR Zip: 97224

Phone: 503.905.2245
Email:skipstanaway@gmail.com

Power of attorney or letter of authorization required if application not sighed by the property owner/deed holder.

LAND USE APPLICATION TYPE
m architectural Review (AR)

- Historic Landmark (HIST)
\square Interpretation (INT)Minor Variance (MVAR)
\square Tree Removal (TCP)
\square Other \qquad

FOR STAFF USE ONLY

Case No.

Date Received:
By:
Fee Amount \$:
Received by:

GENERAL INFORMATION	
Site Address:	12200 SW Myslony Street
Assessor's Map and Tax Lot\#:	2S1 22 C TL 1600
Planning District:	MG
Parcel Size:	5.28 acres
Property Owner:	Four-S Corporation
Applicant:	Skip Stanaway
Proposed Use:	Warehouse

ARCHITECTURAL REVIEW DETAILS	
Residential $\quad \square$ Commercial $\quad \square$ Industrial	
Number of parking spaces:	$\mathbf{2 5}$
Square footage ofbuilding(s):	$\mathbf{5 7 , 0 0 0} \mathbf{~ S F}$
Squarefootage of landscaping:	
Square footage of paving:	
Proposed density (for residential):	

For City Personnel to complete:
Staff contact person:

CITY OF TUALATIN FACT SHEET

General

Proposed use: Warehouse with accessory Office						

Parking

Spaces required (see TDC 73.400)	Spaces provided:
(example: warehouse @ 0.3/1000GFA)	Total parking: 24
Warehouse@0.3/1000 GFA = 15.9	Standard: 18
@ @ 11000 GFA =	ADA accessible:4
@ __/ $1000 \mathrm{GFA}=$ ___Total	Van pool: 2
parking required: $\quad 16$ spaces	Compact: 0
ADA accessible $=2$	Loading berths: 10
Van pool = 2	
$\begin{aligned} & \text { Compact = (max. } 35 \% \text { allowed }) \\ & =\text { Loading berths = } \end{aligned}$	

Bicycles

Covered spaces required: 6 (6 Total Required)	Covered spaces provided: 6 (within building)

Landscaping

Landscaping required: 15_\% of dv	Landscaping provided: 35 _ \% of dvpt	
22,869 Square feet	52,656	Square feet
Landscaped parking island area required: $\%$	Landscaped parking island area provided:	\%

Trash and recycling facility

Minimum standard method:	square feet
Other method:	square feet

For commercial/industrial projects only

Total building area:	$\mathbf{5 7 , 0 0 0}$	$2^{\text {nd }}$ floor:	sq. ft
Main floor:	$\mathbf{5 3 , 0 0 0}$	$3^{\text {rd }}$ floor:	sq. ft.
Mezzanine:	$\mathbf{4 0 0 0}$	$4^{\text {th }}$ floor:	sq. ft.

For residential projects only

Number of buildings:	1	Total sq. ft. of buildings:	$\mathbf{5 7 , 0 0 0}$ sq. ft.
Building stories:	1		

Water supply modeling is necessary for larger projects to determine the impact of the project's water demand on the water supply system. Water supply modeling will be performed by a consulting engineer based on the most recent version of the Tualatin Water System Master Plan.

Due to possible impacts to the water supply system, the following projects in Tualatin require hydraulic modeling based on the size and type of the project and projected water use for the finished project. The outcome of modeling could require offsite improvements to the water supply system in order to ensure that adequate water supply is available to serve the project and reduce impacts to the overallsystem.

Hydraulic modeling of the water supply system is required for the following project type/sizes/demand:

Project Type	Criteria	Permit Fee
Commercial or Industrial Building	Building floor area greater than 48,300 square feet	
	ar Anticipated daily water demand greater than 870 gallons per acre per day	\$ 300 per building
Residential development	More than 49 dwelling units	$\$ 1,000$
Multi-family development	More than 49 dwelling units	or a combined building floor area greater than 48,300
	per building square feet	

Please complete this form and submit the form and required fee (if applicable) with your land-use application (architectural review, subdivision, etc.).

Commercial or Industrial Development

- Building floor area 57,000 square feet
- Anticipated water demand (if known) \qquad gallons per day
- Described planned building use Warehouse with accessory office
\square Residential Development
- Number of dwelling units or single family home lots \qquad
\square Multi-Family Residential Development
- Number of dwelling units \qquad
- Building floor area (sum of all building) \qquad
- Number of multi-family buildings \qquad
Permit fee required based on the information provided above $\$ \mathbf{3 0 0}$
- If no fee is required, enter $\$ 0$.

NOTE: Water Supply Modeling does not replace the requirement for fire hydrant flow testing. Flow testing of fire hydrants will still be required to verify adequate fire flow of finished system

ARCHITECTURAL REVIEW CERTIFICATION OF SIGN POSTING

$24 "$
The applicant shall provide and post a sign pursuant to Tualatin Development Code (TDC) 31.064(2). Additionally, the $18^{\prime \prime} \times 24^{\prime \prime}$ sign must contain the application number, and the block around the word "NOTICE" must remain primary yellow composed of the RGB color values Red 255, Green 255, and Blue 0. Additionally, the potential applicant must provide a flier (or flyer) box on or near the sign and fill the box with brochures reiterating the meeting info and summarizing info about the potential project, including mention of anticipated land use applications). Staff has a Microsoft PowerPoint 2007 template of this sign design available through the Planning Division homepage at < www.tualatinoregon.gov/planning/land-use-application-sign-templates>.

NOTE: For larger projects, the Community Development Department may require the posting of additional signs in conspicuous locations.

As the applicant for the Four-S Warehouse
project, I hereby certify that on this day, \qquad signs) was/were posted on the subject property in accordance with the requirements of the Tualatin Development Code and the Community Development Department - Planning Division.

Applicant's Name: Skip Stanaway
(PLEASE PRINT)
Applicant's Signature:

	LABEL TEMPLATE / EXAMPLE	
	2S123BC02000 PROPERTY OWNER'S NAME ADDRESS CITY STATE ZIP	

Page | 14

Sensitive Area Pre-Screening Site Assessment

1. Jurisdiction: Tualatin
2. Property Information (example 1S234AB01400)

Tax lot ID(s): 2S122C001600
2S1 22C TL 1600
12200 SW MYSLONY STREET
Site Address: No address is available
City, State, Zip: Tualatin, Oregon, 97062
Nearest Cross Street: 124th and SW M yslony
4. Development Activity (check all that apply)

\square	Addition to Single Family Residence (rooms, deck, garage)		
\square	Lot Line Adjustment	\square	Minor Land Partition
\square	Residential Condominium	\square	Commercial Condominium
\square	Residential Subdivision	\square	Commercial Subdivision
$\boxed{\boldsymbol{x}}$	Single Lot Commercial	\square	Multi Lot Commercial
Other			
Site development and commercial building const.			

3. Owner Information

Name: Ronald Endicott
Company: \qquad
Address: PO 261
City, State, Zip: Tualatin, OR, 97062
Phone/Fax: 5034433900
E-Mail: skipstanaway@gmail.com

5. Applicant Information

Name: Karl
Company: TM Rippey Consulting Engineers
Address: 7650 SW Beveland Street
City, State, Zip: Tigard, OR, 97213
Phone/Fax: 5034433900
E-Mail: kkoroch@tmrippey.com
6. Will the project involve any off-site work? \square Yes X No \square Unknown Location and description of off-site work
7. Additional comments or information that may be needed to understand your project \qquad
Site plan is too large to email, contact me if you'd like it provided directly.
This application does NOT replace Grading and Erosion Control Permits, Connection Permits, Building Permits, Site Development Permits, DEQ 1200-C Permit or other permits as issued by the Department of Environmental Quality, Department of State Lands and/or Department of the Army COE. All required permits and approvals must be obtained and completed under applicable local, state, and federal law.
By signing this form, the Owner or Owner's authorized agent or representative, acknowledges and agrees that employees of Clean Water Services have authority to enter the project site at all reasonable times for the purpose of inspecting project site conditions and gathering information related to the project site. I certify that I am familiar with the information contained in this document, and to the best of my knowledge and belief, this information is true, complete, and accurate.
Print/Type Name Karl
Print/Type Title Civil Principal
ONLINE SUBMITTAL
Date $8 / 1 / 2018$

FOR DISTRICT USE ONLY

Sensitive areas potentially exist on site or within 200' of the site. THE APPLICANT MUST PERFORM A SITE ASSESSMENT PRIOR TO ISSUANCE OF A SERVICE PROVIDER LETTER. If Sensitive Areas exist on the site or within 200 feet on adjacent properties, a Natural Resources Assessment Report may also be required.
Based on review of the submitted materials and best available information Sensitive areas do not appear to exist on site or within 200' of the site. This Sensitive Area Pre-Screening Site Assessment does NOT eliminate the need to evaluate and protect water quality sensitive areas if they are subsequently discovered. This document will serve as your Service Provider letter as required by Resolution and Order 17-05, Section 3.02.1. All required permits and approvals must be obtained and completed under applicable local, State, and federal law.
\square Based on review of the submitted materials and best available information the above referenced project will not significantly impact the existing or potentially sensitive area(s) found near the site. This Sensitive Area Pre-Screening Site Assessment does NOT eliminate the need to evaluate and protect additional water quality sensitive areas if they are subsequently discovered. This document will serve as your Service Provider letter as required by Resolution and Order $07-20$, Section 3.02.1. All required permits and approvals must be obtained and completed under applicable local, state and federal law.
\square This Service Provider Letter is not valid unless \qquad CWS approved site plan(s) are attached.
\square The proposed activity does not meet the definition of development or the lot was platted after 9/9/95 ORS 92.040(2). NO SITE ASSESSMENT OR SERVICE PROVIDER LETTER IS REQUIRED.
Reviewed by C fuech thertatlom-

9. THIS PLAN IS \quad enerall ongramantic. in
,

1. storm Pree fitmos are to be Eccenric.

Of TUAATIN VaLLEY fre Ano resue (Tvere)

general grading notes

2. THE Conractor sfall notry The orecon utur niticaton center (800 332 2344)

PRocries

SEE PRouEct geotechmcal Anallsis for pannc, Excanaton, ful, ano compaction
3. SEE PROECCI

AUGUST 2018 - PERMIT SUBMITTAL

(2) W. $\frac{\text { W. TRE TREATMENT SWALE OUTLET DETAIL }}{\text { not } \operatorname{son}}$

ESC PLAN FOR SITES 1 TO 5 ACRES

PROJECT LOCATION

PROPERTY DESCRIPTION

ATTENTION EXCAVATORS

LOCAL AGENCY-SPECIFIC EROSION CONTROL NOTES

RATIONALE STATEMENT

 $K \swarrow$

PROJECT TEAM

OWNER	APPLICANT CONTACT: SKIP STANAWA 16316 SW 72ND AVENUE PORTLAND, OR 97224 PHONE: 5039052245	CIVIL ENGINEER	SURVEYOR - PHONE: 5036242005

STANDARD EROSION AND SEDIMENT CONTROL PLAN DRAWING NOTES

INSPECTION FREQUENCY

SITE CONDITION	MINMUM FREQUENCY
1. ACTVE Perroo	WEEKLY WHEN STORMWATER RUNOFF, INCLUDING RUNOFF FROM SNOW MELT, IS OCCURRING. AT LEAST ONCE EVERY MONTH, REGARDLESS OF WHETHER STORMWATER RUNOFF IS OCCURRING.
-	
	OICE Ever month.
-	arevan an aces
5. Perloss ounc mild Dischage is	MONTHLY. RESUME MONITORING IMMEDIATELY UPON MELT, OR WHEN WEATHER CONDITIONS MAKE MELT, OR WHEN WE DISCHARGES LIKELY

NARRATIVE DESCRIPTIONS

PERMITTEE'S SITE INSPECTOR \qquad
\qquad

BMP MATRIX FOR CONSTRUCTION PHASES

	clearng		Mstallaton	consriection	Stincluation	$\begin{array}{\|c\|} \hline \text { WET WEATHER } \\ \text { (OCT. } 1 \text { TO MAY 31) } \\ \hline \end{array}$
\pm	-x	\times	\times			
Gemene oure					${ }_{\text {x }}^{\times}$	
cusmememe						
Wems ompel	\times	$\stackrel{x}{x}$	${ }^{\text {x }}$		$\frac{x^{x}}{\text { x }}$	
erifr zome						
stowere cownea						
	${ }^{-x}$	\times				
Smuth mis						
Mif periciove	-x	\times	\times		\times	
Run Of Cownea						
Cosprection ememe	${ }^{-\times}$	\times	$\stackrel{x}{ }$			x
\%	\times	\times	\times		x	
chere was						
Pouvon rememer						
	\| ${ }^{\frac{x}{x}}$	$\stackrel{\text { x }}{\times}$	\times			${ }_{\text {x }}$
Stind	${ }_{-\times}^{\times}$	${ }^{\times}$	$\stackrel{x}{x}$			
Onter						

 SHEET INDEX

FORMED STEEL PANELS WITH
VERTICALL BOX RII; DARK GRAY
COLOR

TILT-UP CONCRETE PANELS WITH ELASTOMERII PAINT COAAING
SMOOTH FINISH: NEUTRAL
COLOR

3 I2" WIDE BY $1.5^{"}$ DEEP REVEAL

ALUMINUM \& GLASS EXTERIOR STOREFRONT; DARK GRAY
COLOR TO MATCH FORMED STEEL PANELS

NORTH ELEVATION

SOUTH ELEVATION

EAST ELEVATION CONCRETE PANE

Verical
COLOR

RAIN WATER SCUPPER AND LEADER;
PAIIT FIIISH
$12^{2} 0^{\circ} \mathrm{W} \times 13^{3} 0^{\circ} \mathrm{HSECTONaL}$ LOADING DOOR WITH PANT FIIIS LoADNG DOOR WTH PA
 LOADING DOORS WTHAANT
FNISH:
NEUTRAL GRAY COLOR

WEST ELEVATION

EAST/WEST BUILDING SECTION | $1 / 16^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

NORTHEAST CORNER PERSPECTIVE

CODE SECTION	REQUIREMENT	CODE REVIEW NARRATIVE
61.010 Purpose	Limits retail sales area Industrial Business Park Overlay Special Commercial Setback	No retail sales area provided TDC Chapter 69 not applicable Not applicable; not a commercial use
61.020 Permitted Uses	(1) All uses permitted by TDC 60.020 and 60.037	Warehousing per TDC 60.020, (34)
61.021 Restrictions on Permitted Uses	"(1) The use must be conducted wholly within a completely enclosed building, except offstreet parking and loading, utility facilities, wireless communication facilities, outdoor storage of materials and products directly related to the permitted use"	The primary use will occur within the building. No outdoor storage of materials and products will occur. No retail sales area or other restricted uses apply.
61.040 Prohibited Uses		Permitted use per TDC 61.020, (34)
Section 61.050 Lot Size.	(1) The minimum lot area shall be 20,000 square feet. (2) The minimum lot width shall be 100 feet. (3) The minimum average lot width at the building line shall be 100 feet. (4) The minimum lot width at the street shall be 100 feet.	(1) Lot area $=229,997 \mathrm{SF}$ (2) Minimum lot width $=286$ feet (3) Complies (4) Complies
61.060 Setback Requirements	(1) Front yard, 30 'min. (2) Side yard, $0-50^{\prime}$ (3) Rear yard, $0-50^{\prime}$ min (5) Min. parking and circulation area setback is 10^{\prime} at R.O.W.; no setback required from lot lines within ingress and egress areas shared by abutting properties in accordance with TDC 73.400(2). (8) No fence shall be constructed within 10^{\prime} of R.O.W.	(1) Actual $=39.69^{\prime}$ (2) Actual $=58.74$ north, 82.9^{\prime} south (3) Actual $=100.79^{\prime}$ (5) Minimum parking and circulation area setback is 10^{\prime} at east side access drive (8) No fencing proposed
61.080 Structure Height	(1) Maximum height of 60'	(1) Actual height is $33^{\prime}-0^{\prime \prime}$ per building elevations

CODE SECTION	REQUIREMENT	CODE REVIEW NARRATIVE
73.050 Criteria and Standards	(a) The proposed site development, including the site plan, architecture, landscaping, parking and graphic design, is in conformance (b) The proposed design of the development is compatible with the design of other developments in the vicinity (c) The location, design, size, color and materials of the exterior of all structures are compatible with the proposed development and appropriate to the design character of other developments in the vicinity	(a) The proposed development is a onestory warehouse structure consistent with Nortek Air Solutions to the NW, Tufcoat Powder Coating Services to the north, and Tualatin Sleep Products to the NE (b) The vicinity development is mainly comprised of simple, orthogonal structures with flat roofs - new development is consistent with this massing and the use of simple forms (c) The use of tilt-up concrete panels and industrial metal siding is consistent with vicinity construction materials. Tilt-up panel color will be light-colored and neutral, and metal panel color will be gray.
73.150 Objectives	(1)Provide convenient walkways and crosswalks which separate pedestrians from vehicles and link primary building entries to parking areas, other on-site buildings and the public right- of-way (2) Avoid barriers to disabled individuals (3) Locate and design drivethrough facilities in a manner which does not conflict with pedestrian routes (4)"Break up parking areas with landscaping..." (5) "Utilize landscaping in parking areas to direct and	(1) Concrete walkways are provided connecting parking areas to building entries at the NE and SE corners. A concrete walkway adjacent to the NE (primary) entrance and parking area extends north to the public sidewalk along Myslony Street (2) ADA-required parking is provided near building entrances and does not require crossing a vehicle area. A 5\% max. slope ramp connects the ADA parking at the NE corner to the building entrance as a result of the grade elevation relative to the building floor elevation (3) Not applicable (4) Parking areas comply with TDC landscape requirements, using shade trees, shrubs and groundcover

CODE SECTION	REQUIREMENT	CODE REVIEW NARRATIVE
	control vehicular movement patterns, screen headlights from adjacent properties and streets, and lessen the visual dominance of pavement coverage (6) Provide vehicular connections to adjoining sites (9) Encourage outdoor seating areas (12) Provide safe pathways for pedestrians to move from parking areas to building entrances (17) Provide preferential parking for carpool and vanpools to encourage employees to participate in carpools and vanpools (18) Screen elements such as mechanical and electrical equipment	5) All parking faces building; primary vehicle circulation ingress at south end faces an internal area of the property and existing tree line along south property line; primary vehicle circulation ingress along the east side faces existing tree line. Vehicle circulation egress faces existing public streets 6) Corner lot; development preserves the possibility of vehicular connection to the east 12) See (1) and (2) above 17) Two (2) carpool/vanpool vehicle parking spots provided 18) HVAC package units for office spaces will be located at the roof and set back from parapet for concealment. Trash and recycling dumpsters will be screened with architecturally compatible construction
73.160 Standards	(1) (b)"For Industrial Uses i. a walkway shall be provided from the main entrance to sidewalks in the public right-of-way (c) Curb ramps shall be provided wherever a walkway or accessway crosses a curb	(1) ,(b), 1. A concrete walkway is provided from the NE building entrance (primary) to the public sidewalk along Myslony Street (1), (c) Curb ramps provided opposite accessible parking at the NE and SE corners of the building

CODE SECTION	REQUIREMENT	CODE REVIEW NARRATIVE
	(3) Safety and Security (b) Locate windows and provide lighting in a manner which enables surveillance of interior activity from the public right-of-way (c) Locate, orient and select on-site lighting to facilitate surveillance of on-site activities from the public right-of-way without shining into public rights-of-way or fish and wildlife habitat areas	(3) (b) Parking lots, pedestrian access walkways, and loading apron provided with electric lighting for security purposes (3), (c) On-site lighting will comply with dark-sky requirements and not shine into public right-of-way
73.210 Objectives	(1) Minimize disruption of natural site features such as topography, trees and water features (8) Select colors in consideration of lighting conditions and the context under which the structure is viewed, the ability of the material to absorb, reflect or transmit light and the color's functional role (e.g., to identify and attract business, aesthetic reasons, imagebuilding)	(1) There are no existing water features onsite. Grading at existing trees along south property line has been avoided. Site grading has been minimized to balance cut and fill but maintain a single floor elevation (8) Exterior building colors will be neutral, consistent with other buildings in the vicinity; tilt-up concrete panels will be provided with an elastomeric paint coating for maintainability and a light color consistent with the appearance of concrete
73.220 Standards	(1) Safety and Security (a) Locate, orient and select on-site lighting to facilitate..." (b) Provide an identification system which clearly identifies and locates buildings and their entries (c) Shrubs in parking areas shall not exceed 30 inches in height, and tree canopies must not extend below 8 feet measured from grade	(1) (a) See previous commentary for TDC 73.160(c) regarding on-site lighting (b) Street address signage will be provided per Code through monument signage in site areas; see Landscape Plan for locations (c) See landscape plan for plant material description; trees shall be maintained in compliance

CODE SECTION	REQUIREMENT	CODE REVIEW NARRATIVE
73.227 Standardsfor solid waste		
73.240 Landscaping General Provisions	(3) The minimum area requirement for landscaping ... MG Planning Districts shall be fifteen (15) percent of the	(3) Area to be developed $=3.5$ acres $=$ 152,460 SF x $.15=22,869$ SF Proposed: 52,656 SF
	total land area to be developed" (11) Any required landscaped area shall be designed, constructed, installed and maintained so that within three years the ground shall be covered by living grass or other plant materials...A maximum of 10% of the landscaped area may be covered with un-vegetated areas of bark chips, rock, or stone	(11) See Landscape Plan - configuration and plant materials selected will comply with this subsection; gabion wall features cover approximately 820 SF or 1.6% of the landscaped area
73.250 Tree Preservation	(1) Tree and other plant materials to be retained shall be identified on the landscaping and grading plan	(1) No existing trees in the area to be developed
73.260 Tree and Plant Specifications	(1) Minimum standards for trees and plants, (a) through (e)	(1) Trees include both deciduous and coniferous species (see Landscape Plan) and will comply with this subsection. Evergreen and deciduous shrubs, ground cover, and grass seed mix to also comply. No English Ivy proposed.

CODE SECTION	REQUIREMENT	CODE REVIEW NARRATIVE
73.290 Revegetation in Unlandscaped Areas	The purpose of this section is to ensure erosion protection, and in appropriate areas to encourage soil amendment, for those areas not included within the landscape percentage requirements	The entirety of the 3.5 acres of development area will be improved, with either pavement or landscaping at all nonbuilding areas. The remaining portions of the property at the eastern side is preserved for future development
73.310 Landscape Standards - Commercial, Industrial, Public and Semi-Public Uses.	(1) A minimum 5-foot-wide landscaped area must be located along all building perimeters which are viewable by the general public from parking lots or the public right-of-way (3) All areas not occupied by buildings, parking spaces, driveways, drive aisles, pedestrian areas or undisturbed natural areas shall be landscaped	(1) See Landscape Plan; all areas comply (3) See Landscape Plan; proposed development complies
73.340 Off-Street Parking Lot Landscaping Standards	(1) The goals of the off-street parking lot standards are to create shaded areas in parking lots, to reduce glare and heat build-up, provide visual relief within parking areas...	(1) The proposed development incorporates trees, shrubs, and groundcover at parking lot islands and adjoining landscape spaces
73.340 Off-Street Parking Lot and Loading Area	(1) A clear zone shall be provided for the driver at ends of on-site drive aisles and at driveway entrances, vertically between a maximum of $30^{\prime \prime}$ and a minimum of $8^{\prime}-0^{\prime \prime}$ measured at ground level (2) Perimeter site landscaping at least $5^{\prime}-0^{\prime \prime}$ in width...	(1) SW ingress/egress is in a grass seed mix area and will be unobstructed; NE ingress/egress location will have low shrubs and groundcover below $30^{\prime \prime}$ in height (2) Project complies; see Landscape Plan

CODE SECTION	REQUIREMENT	CODE REVIEW NARRATIVE
73.360 Off-Street Parking Lot Landscape IslandsIndustrial	(1) A minimum of 25 square feet per parking stall shall be improved with landscape island areas (2) Landscaped island areas with... trees shall be a minimum of 5 feet in width (3) A minimum of one deciduous shade tree shall be provided for every four (4) parking spaces to lessen the adverse impacts of glare, reduce heat from paved surfaces, and to emphasize circulation patterns. Required shade trees shall be uniformly distributed throughout the parking lot (see TDC 73.380(3)) (4) Landscape islands shall be utilized at aisle ends to protect parked vehicles (5) Required plant material in landscape islands shall achieve 90 percent coverage within three years. Native shrubs and trees are encouraged."	(1) Project complies; see Landscape Plan (2) All landscaped islands comply (3) Project complies; see Landscape Plan 8 trees provide for 24 stalls (4) Project complies; see Landscape Plan (5) Proposed landscape materials include ground cover and grasses for compliance
	(7) (a) through (g) Deciduous shade trees shall meet the following criteria	See Landscape Plan - all deciduous trees comply with all requirements

CODE SECTION	REQUIREMENT	CODE REVIEW NARRATIVE
73.370 Off-Street Parking and Loading	(1) General Provisions (a) At the time of establishment of a new structure...off-street parking, off-street vanpool and carpool parking spaces...off-street bicycle parking, and off=street loading berths shall be provided... (n) Bicycle parking facilities... long term and short term (o) Bike parking space shall be $6^{\prime}-0^{\prime \prime}$ long, $2^{\prime}-0^{\prime \prime}$ wide with $7^{\prime}-0^{\prime \prime}$ min. overhead clear (p) 5-foot-wide bicycle maneuvering area shall be provided beside (q) Access to bicycle parking shall be provided by an area at least 3 feet in width (u) Bicycle parking areas and facilities shall be identified with appropriate signing as specified in the Manual on Uniform Traffic Control Devices (MUTCD) (v) "Required vanpool and carpool parking shall meet the 9 -foot parking stall standards in Figure 73-1 and be identified with appropriate signage	(1) (a) New construction; project complies in all respects (n) Bicycle parking is entirely contained within interior of building (o), (p), (q), (u), (v) - project complies

CODE SECTION	REQUIREMENT	CODE REVIEW NARRATIVE
	(2) Off-Street Parking Provisions (ii) Warehousing Min. Vehicle Parking: 0.3/1,000 Max. Vehicle Parking: 0.5/1,000 Bicycle Parking Requirement: 0.10/1,000 Covered Bicycle Requirement: First 5 (3) Off-Street Vanpool and Carpool Parking Spaces Required: 2	(2) Parking Counts: Min. Vehicle Parking: 24 spaces proposed (16 required) Max. Vehicle Parking: 24 spaces proposed (27 allowed) Bicycle Parking: 6 total Covered Bicycle Parking: 6 (all spaces covered inside building) Proposed Vanpool and Carpool Spaces: 2
73.380 Off Street Parking Lots	(1) Off-street parking lot design shall comply with the dimensional standards set forth in figure 73-1 (2) Parking stalls for subcompact vehicles shall not exceed 35 percent o parking stalls (3) Parking stalls shall not exceed eight continuous spaces in a row without a landscape separation (4) All parking lot drive aisles shall be constructed of asphalt or concrete (9) Parking bumpers or wheel stops or curbing shall be provided (10) Disability parking spaces and accessibility shall be provided in accordance with applicable federal and state requirements."	(1) See Landscape Plan; project complies (2) No sub-compact parking spaces are proposed (3) See Landscape Plan; project complies (4) All parking lot drive aisles are constructed of asphalt paving (9) 6 " concrete curbs are provided at all parking areas, interrupted only by ADA-required curb ramps (10)Per OSSC, parking lots with 26 to 50 spaces must provide 2 accessible parking spaces, one of which must be van-accessible. One of each proposed - project complies

CODE SECTION	REQUIREMENT	CODE REVIEW NARRATIVE
73.390 Off-Street Loading Facilities	(1) Minimum number of loading berths for 25,000 to 60,000 SF is 2 berths (2) Min. size for Industrial $=$ $12^{\prime} \times 60^{\prime}$ and an unobstructed height of 14^{\prime}	(1) 8 loading docks and 2 loading ramps proposed consistent with warehouse use (2) All loading berths comply with these requirements
Section 73.400 Access	(6) Except as provided in TDC 53.100, all ingress and egress shall connect directly with public streets (8) to afford safe pedestrian access and egress...a sidewalk shall be constructed along all street frontage (12) Min. Access Requirements for $1-250$ spaces= 1 access required: 36 feet wide for first 50 ' from ROW, 24^{\prime} wide thereafter; no curbs or walkway required	(6) Project complies; ingress/egress along $124^{\text {th }}$ Avenue will be right-in/right-out only due to existing median and safety considerations (8) Existing sidewalks parallel both $124^{\text {th }}$ Avenue and Myslony Street. The sidewalk along $124^{\text {th }}$ Avenue will be repaired in concert with construction of the access, including curb ramps on each side, constructed to match existing adjacent. Similarly, the sidewalk along Myslony Street will be repaired and completed to its intersection with the east property line (12)

CODE SECTION	REQUIREMENT	CODE REVIEW NARRATIVE
Section 73.410 Street Tree Plan	Street trees shall comply with TDC 74.765	Existing street trees are already provided along both $124^{\text {th }}$ Avenue and Myslony Street - no modifications anticipated
Section 74.420 Street Improvements	When an applicant proposes to develop land adjacent to an existing street... the applicant should be responsible for the improvements to the adjacent existing or proposed street that will bring the improvement of the street into conformance with the Transportation Plan (TDC Chapter 11)	$124^{\text {th }}$ Avenue is already improved in conformance with the Transportation Plan. The portion of Myslony Street along the subject property frontage conforms with the exception that the width of the paved area and ROW is slightly less than that required under the reclassification of Myslony Street in the Transportation Plan
Section 74.440 Streets, Traffic Study Required	(1) The City Engineer may require a traffic study...	See attached Traffic Study

End of Code Review Narrative

City of Tualatin
\section*{www.tualatinoregon.gov}

October 19, 2018

CITY ENGINEER'S REVIEW FINDING AND DECISION FOR AR18-04

Contents
I. RECOMMENDATION 4
A. PRIOR TO ISSUANCE OF EROSION CONTROL, PUBLIC WORKS, AND WATER QUALITY PERMITS: 4
B. PRIOR TO ISSUANCE OF A BUILDING PERMIT: 4
C. PRIOR TO ISSUANCE OF A CERTIFICATE OF OCCUPANCY: 5
II. APPEAL 5
III. STANDARDS AND APPLICABLE CRITERIA 6
IV. CONCLUSIONS 6
A. TMC TITLE 03: UTILITIES AND WATER QUALITY 6
I. TMC CHAPTER 03-02: SEWER REGULATIONS; RATES 6

1. TMC 3-2-020 APPLICATION, PERMIT AND INSPECTION PROCEDURE 6
2. TMC 3-2-030 MATERIALS AND MANNER OF CONSTRUCTION. 6
II. TMC CHAPTER 03-03: WATER SERVICE 7
3. TMC 3-3-040 SEPARATE SERVICES REQUIRED 7
4. TMC 3-3-110 CONSTRUCTION STANDARDS. 8
5. TMC 3-3-120 BACKFLOW PREVENTION DEVICES AND CROSS CONNECTIONS 8
6. TMC 3-3-130 CONTROL VALVES 9
III. TMC 3-5 ADDITIONAL SURFACE WATER MANAGEMENT STANDARDS 10
7. TMC 3-5-010 POLICY 10
8. TMC 3-5-050 EROSION CONTROL PERMITS 10
9. TMC 3-5-060 PERMIT PROCESS 10
10. TMC 3-5-200 DOWNSTREAM PROTECTION REQUIREMENT 11
11. TMC 3-5-210 REVIEW OF DOWNSTREAM SYSTEM. 11
12. TMC 3-5-220 CRITERIA FOR REQUIRING ON-SITE DETENTION TO BE CONSTRUCTED 12
IV. TMC 3-5 PERMANENT ON-SITE WATER QUALITY FACILITIES 13
13. TMC 3-5-280 PLACEMENT OF WATER QUALITY FACILITIES. 13
14. TMC 3-5-290 PURPOSE OF TITLE. 13
15. TMC 3-5-300 APPLICATION OF TITLE. 13
16. TMC 3-5-310 EXCEPTIONS. 14
17. TMC 3-5-320 DEFINITIONS 14
18. TMC 3-5-330 PERMIT REQUIRED. 15
19. TMC 3-5-340 FACILITIES REQUIRED 15
20. TMC 3-5-345 INSPECTION REPORTS 15
21. TMC 3-5-350 PHOSPHOROUS REMOVAL STANDARD. 16
22. TMC 3-5-360 DESIGN STORM. 16
23. TMC 3-5-370 DESIGN REQUIREMENTS 16
24. TMC 3-5-330 PERMIT REQUIRED. Error! Bookmark not defined.
25. TMC 3-5-340 FACILITIES REQUIRED. Error! Bookmark not defined.
26. TMC 3-5-390 FACILITY PERMIT APPROVAL 17
B. CHAPTER 04-02: FIRE HYDRANT LOCATIONS AND RATES OF FLOW 17
I. TMC 4-2-010 HYDRANTS AND WATER SUPPLY FOR FIRE PROTECTION. 17
C. TDC CHAPTER 73: COMMUNITY DESIGN STANDARDS 18
I. TDC SECTION 73.270 GRADING 18
II. TDC SECTION 73.400 ACCESS. 19
D. TDC CHAPTER 74: PUBLIC IMPROVEMENT REQUIREMENTS 23
I. TDC SECTION 74.120 PUBLIC IMPROVEMENTS 23
II. TDC SECTION 74.130 PRIVATE IMPROVEMENTS 24
III. TDC SECTION 74.140 CONSTRUCTION TIMING. 24
IV. TDC SECTION 74.210 MINIMUM STREET RIGHT-OF-WAY WIDTHS 24
V. TDC SECTION 74.330 UTILITY EASEMENTS 25
VI. TDC SECTION 74.420 STREET IMPROVEMENTS. 26
VII. TDC SECTION 74.425 STREET DESIGN STANDARDS. 29
VIII. TDC SECTION 74.430 STREETS, MODIFICATIONS OF REQUIREMENTS IN CASES OF UNUSUAL CONDITIONS 30
IX. TDC 74.440 STREETS, TRAFFIC STUDY REQUIRED 31
X. TDC SECTION 74.470 STREET LIGHTS. 33
XI. TDC SECTION 74.485 STREET TREES 33
XII. TDC SECTION 74.610 WATER SERVICE. 33
XIII. TDC SECTION 74.620 SANITARY SEWER SERVICE. 35
XIV. TDC SECTION 74.630 STORM DRAINAGE SYSTEM. 35
XV. TDC SECTION 74.640 GRADING 36
XVI. TDC SECTION 74.650 WATER QUALITY, STORM WATER DETENTION AND EROSION CONTROL 37
XVII. TDC 74.660 UNDERGROUND 38
XVIII. TDC SECTION 74.670 EXISTING STRUCTURES 39

I. RECOMMENDATION

Based on the findings presented, the City Engineer approves AR18- with the following conditions:

A. PRIOR TO ISSUANCE OF EROSION CONTROL, PUBLIC WORKS, AND WATER QUALITY PERMITS:

PFR-1 Submit final sanitary sewer plans that show location of the lines, grade, materials, and other details including a clean out at the right-of-way.
PFR-2 Submit final water system plans that show location of the water lines, grade, materials, and other details that include a separate lateral with a valve at the main for domestic and fire water services.
PFR-3 Show a public utility easement surrounding the exterior of the DCVA by 5 feet.
PFR-4 City of Tualatin erosion control permit (EC 1218 1511) has been issued in accordance with code section TMC 3-5-060.
PFR-5 1200CN NPDES Erosion Control Permit has been issued.
PFR-6 Submit final storm drainage calculations.
PFR-7 Submit final plans showing runoff from the site treatment and flow control facilities directed to the existing public storm drainage system in Myslony Street, with a clean out at the right-of-way.
PFR-8 Not used.
PFR-9 Submit plans that meet the requirements of TVF\&R.
PFR-10 Submit plans that show the full access driveway onto Myslony to be 36 feet wide at right of way and right in-right out driveway to $124^{\text {th }}$ to be 36 ft . wide at the right of way.
PFR-11 Prove that any existing street light illumination is adequate or construct street lights in accordance with Public Works Construction Code.
PFR-12 Submit plans that are sufficient to obtain a Stormwater Connection Permit Authorization Letter that complies with the submitted Service Provider Letter conditions.
PFR-13 Submit plans that minimize the impact of stormwater from the development to adjacent properties.
PFR-14 Submit plans that show overhead utilities underground.
PFR-15 Submit a plan sheet that includes all City Engineer and Planning Division conditions of approval. Include Clean Water Services' Service Provider Letter.
PFR-16 Submit PDFs of final site and permit plans.

B. PRIOR TO ISSUANCE OF A BUILDING PERMIT:

PFR-17 Obtain an Erosion Control, Public Works, and Water Quality Permit from the City of Tualatin.
PFR-18 Complete all the public improvements, shown on submitted plans and corrected by conditions of approval, and have them accepted by the City or provide financial assurance.

C. PRIOR TO ISSUANCE OF A CERTIFICATE OF OCCUPANCY:

PFR-19 Construct all private and public improvements shown on submitted plans and corrected by conditions of approval.
PFR-20 Record the public utility easement including surrounding the exterior of the DCVA by 5 feet.

II. APPEAL

Requests for review of this decision must be received by the Engineering Division within the 14-day appeal period ending on $\mathbf{x x}, 2018$ at 5 PM. Issues must have been described with adequate clarity and detail with identification of the associated Tualatin Municipal or Development Code section to afford a decision maker an opportunity to respond to the issue. A request for review must be submitted on the form provided by the City, as detailed in TDC 36.161, and signed by the appellant.

III. STANDARDS AND APPLICABLE CRITERIA

Tualatin Municipal Code (TMC)
Title 03: Utilities and Water Quality
Title 04: Building
Tualatin Development Code (TDC)
Chapter 73: Community Design Standards
Chapter 74: Public Improvement Requirements
Chapter 75: Access Management

IV. CONCLUSIONS

A. TMC TITLE 03: UTILITIES AND WATER QUALITY

I. TMC CHAPTER 03-02: SEWER REGULATIONS; RATES

1. TMC 3-2-020 APPLICATION, PERMIT AND INSPECTION PROCEDURE.
(1) No person shall connect to any part of the sanitary sewer system without first making an application and securing a permit from the City for such connection, nor may any person substantially increase the flow, or alter the character of sewage, without first obtaining an additional permit and paying such charges therefore as may be fixed by the City, including such charges as inspection charges, connection charges and monthly service charges.

FINDINGS:

As shown on Sheet C4.1, this project is proposing a six-inch sanitary sewer connection to an existing public sanitary lateral at SW $124^{\text {th }}$, near the southwest corner of the site. A clean out will be installed at the right of way. Sanitary sewer line designs will be in conformance with the Public Works Construction Code and the current international plumbing code.

This criterion is satisfied with conditions of approval PFR-1, PFR-17, and PFR-19.

2. TMC 3-2-030 MATERIALS AND MANNER OF CONSTRUCTION.

(1) All building sewers, side sewers and connections to the main sewer shall be so constructed as to conform to the requirements of the Oregon State Plumbing Laws and rules and regulations and specifications for sewerage construction of the City.

FINDINGS:

As shown on Sheet C4.1, this project is proposing a six-inch sanitary sewer connection to an existing public sanitary lateral at SW $124^{\text {th }}$, near the southwest corner of the site. A clean out will be installed at the right of way. Sanitary sewer line designs will be in conformance with the Public Works Construction Code and the current international plumbing code.

This criterion is satisfied with conditions of approval PFR-1, PFR-17, and PFR-19.
(3) A public works permit must be secured from the City and other agency having jurisdiction by owners or contractors intending to excavate in a public street for the purpose of installing sewers or making sewer connections.

FINDINGS:

As shown on Sheet C4.1, this project is proposing a six-inch sanitary sewer connection to an existing public sanitary lateral at SW $124^{\text {th }}$, near the southwest corner of the site. A clean out will be installed at the right of way. Sanitary sewer line designs will be in conformance with the Public Works Construction Code and the current international plumbing code.

This criterion is satisfied with conditions of approval PFR-1, PFR-17, and PFR-19.

II. TMC CHAPTER 03-03: WATER SERVICE

1. TMC 3-3-040 SEPARATE SERVICES REQUIRED.

(1) Except as authorized by the City Engineer, a separate service and meter to supply regular water service or fire protection service shall be required for each building, residential unit or structure served. For the purposes of this section, trailer parks and multi-family residences of more than four dwelling units shall constitute a single unit unless the City Engineer determines that separate services are required.

FINDING:

As shown on Sheet C4, this application is proposing a fire service connection to an existing 8 -inch public fire service lateral at the SW $124^{\text {th }}$ frontage and a domestic water connection at the existing public water main in SW Myslony Street. Water line designs will be in conformance with the Public Works Construction Code.

The plans include a valve at the connection to the public main for domestic service. A valve already exists for the fire service.

The applicant will submit water system plans that show location and other details prior to obtaining a Building Permit. A public works construction permit for the domestic and fire connections will be obtained. The applicant has not applied for a public works permit for these improvements. The applicant will need to submit water system plans that show
location of the water lines, grade, materials, and other details prior to obtaining a public works permit.

This criterion is satisfied with conditions of approval PFR-2, PFR-3, PFR-15, and PFR16.

2. TMC 3-3-110 CONSTRUCTION STANDARDS.

All water line construction and installation of services and equipment shall be in conformance with the City of Tualatin Public Works Construction Code. In addition, whenever a property owner extends a water line, which upon completion, is intended to be dedicated to the City as part of the public water system, said extension shall be carried to the opposite property line or to such other point as determined by the City Engineer. Water line size shall be determined by the City Engineer in accordance with the City's Development Code or implementing ordinances and the Public Works Construction Code.

FINDING:

As shown on Sheet C4, this application is proposing a fire service connection to an existing 8 -inch public fire service lateral at the SW $124^{\text {th }}$ frontage and a domestic water connection at the existing public water main in SW Myslony Street. Water line designs will be in conformance with the Public Works Construction Code.

The plans include a valve at the connection to the public main for domestic service. A valve already exists for the fire service.

The applicant will submit water system plans that show location and other details prior to obtaining a Building Permit. A public works construction permit for the domestic and fire connections will be obtained. The applicant has not applied for a public works permit for these improvements. The applicant will need to submit water system plans that show location of the water lines, grade, materials, and other details prior to obtaining a public works permit.

This criterion is satisfied with conditions of approval PFR-2, PFR-3, PFR-15, and PFR16.

3. TMC 3-3-120 BACKFLOW PREVENTION DEVICES AND CROSS CONNECTIONS.

(1) Except where this ordinance provides more stringent requirements, the definitions, standards, requirements and regulations set forth in the Oregon Administrative Rules pertaining to public water supply systems and specifically OAR 333 Division 61 in effect on the date this ordinance becomes effective are hereby adopted and incorporated by reference.
(2) The owner of property to which City water is furnished for human consumption shall install in accordance with City standards an appropriate backflow prevention device on the premises where any of the following circumstances exist:
(a) Those circumstances identified in regulations adopted under subsection (1) of this section;
(b) Where there is a fire protection service, an irrigation service or a nonresidential service connection which is two inches (2") or larger in size;
(c) Where the potable water supply provided inside a structure is 32 feet or more, higher than the elevation of the water main at the point of service connection;

FINDING:

The proposed water laterals will connect to the City's existing public water mains within SW $124^{\text {th }}$ and SW Myslony. Sheet C4 shows a fire service backflow prevention DCDV and vault within a public utility easement adjacent to the SW 124th right-of-way. The domestic service includes a reduced pressure backflow preventer after the water meter at the right-of-way. The applicant will provide final plans and install these backflow preventers. The public utility easement will surround the DCDV by 5 feet.

This criterion is satisfied with conditions of approval PFR-2, PFR-3, PFR-15, and PFR16.
(4) Except as otherwise provided in this subsection, all irrigation systems shall be installed with a double check valve assembly. Irrigation system backflow prevention device assemblies installed before the effective date of this ordinance, which were approved at the time they were installed but are not on the current list of approved device assemblies maintained by the Oregon State Health Division, shall be permitted to remain in service provided they are properly maintained, are commensurate with the degree of hazard, are tested at least annually, and perform satisfactorily. When devices of this type are moved, or require more than minimum maintenance, they shall be replaced by device assemblies which are on the Health Division list of approved device assemblies.

FINDING:

The proposed water laterals will connect to the City's existing public water mains within SW $124^{\text {th }}$ and SW Myslony. Sheet C4 shows a fire service backflow prevention DCDV and vault within a public utility easement adjacent to the SW 124th right-of-way. The domestic service includes a reduced pressure backflow preventer after the water meter at the right-of-way. The applicant will provide final plans and install these backflow preventers. The public utility easement will surround the DCDV by 5 feet.

This criterion is satisfied with conditions of approval PFR-2, PFR-3, PFR-15, and PFR16.

4. TMC 3-3-130 CONTROL VALVES.

The customer shall install a suitable valve, as close to the meter location as practical, the operation of which will control the entire water supply from the service. The operation by the customer of the curb stop in the meter box is prohibited.

FINDING:

As shown on Sheet C4, this application is proposing a fire service connection and a domestic water service that will connect with the existing public water mains in SW $124^{\text {th }}$ (fire) and SW Myslony (domestic water). Water line designs will be in conformance with the Public Works Construction Code.

The applicant will submit water system plans that show location and other details prior to obtaining a Building Permit. A public works construction permit for the domestic and fire connections will be obtained. The applicant has not applied for a public works permit for these improvements. The applicant will need to submit water system plans that show location of the water lines, grade, materials, and other details prior to obtaining a public works permit.

This criterion is satisfied with conditions of approval PFR-2, PFR-3, PFR-15, and PFR16.

III. TMC 3-5 ADDITIONAL SURFACE WATER MANAGEMENT STANDARDS

1. TMC 3-5-010 POLICY.

It is the policy of the City to require temporary and permanent measures for all construction projects to lessen the adverse effects of construction on the environment. The contractor shall properly install, operate and maintain both temporary and permanent works as provided in this chapter or in an approved plan, to protect the environment during the term of the project. In addition, these erosion control rules apply to all properties within the City, regardless of whether that property is involved in a construction or development activity. Nothing in this chapter shall relieve any person from the obligation to comply with the regulations or permits of any federal, state, or local authority...

2. TMC 3-5-050 EROSION CONTROL PERMITS.

(1) Except as noted in subsection (3) of this section, no person shall cause any change to improved or unimproved real property that causes, will cause, or is likely to cause a temporary or permanent increase in the rate of soil erosion from the site without first obtaining a permit from the City and paying prescribed fees...

3. TMC 3-5-060 PERMIT PROCESS.

(1) Applications for an Erosion Control Permit. Application for an Erosion Control Permit shall include an Erosion Control Plan which contains methods and interim facilities to be constructed or used concurrently and to be operated during construction to control erosion. The plan shall include either:
(a) A site specific plan outlining the protection techniques to control soil erosion and sediment transport from the site to less than one ton per acre per year as calculated using the Soil Conservation Service Universal Soil Loss Equation or other equivalent method approved by the City Engineer, or
(b) Techniques and methods contained and prescribed in the Soil Erosion Control Matrix and Methods, outlined in TMC 3-5.190 or the Erosion Control Plans - Technical Guidance Handbook, City of Portland and Unified Sewerage Agency, January, 1991.
(2) Site Plan. A site specific plan, pre-pared by an Oregon registered professional engineer, shall be required when the site meets any of the following criteria:
(a) greater than five acres;
(b) greater than one acre and has slopes greater than 20 percent;
(c) contains or is within 100 feet of a City-identified wetland or a waterway identified on FEMA floodplain maps; or
(d) greater than one acre and contains highly erodible soils.

FINDING:

The application materials indicate disturbance area of 3.75 acres. The applicant has obtained a 1200CN Construction Erosion Control permit from Clean Water Services as agent for Oregon DEQ and has obtained a grading (EXGR 18 1508) and erosion control permit (EC 1218 1511) from the City of Tualatin as required prior to issuance of permits allowing construction activities.

This criterion is satisfied with conditions of approval PFR-4 and PFR-5.

4. TMC 3-5-200 DOWNSTREAM PROTECTION REQUIREMENT.

Each new development is responsible for mitigating the impacts of that development upon the public storm water quantity system. The development may satisfy this requirement through the use of any of the following techniques, subject to the limitations and requirements in TMC 3-5-210: Construction of permanent on-site stormwater quantity detention facilities designed in accordance with this title;...

5. TMC 3-5-210 REVIEW OF DOWNSTREAM SYSTEM.

For new development other than the construction of a single family house or duplex, plans shall document review by the design engineer of the downstream capacity of any existing storm drainage facilities impacted by the proposed development. That review shall extend downstream to a point where the impacts to the water surface elevation from the development will be insignificant, or to a point where the conveyance system has adequate capacity, as determined by the City Engineer. To determine the point at which the downstream impacts are insignificant or the drainage system has adequate capacity, the design engineer shall submit an analysis using the following guidelines:
(1) evaluate the downstream drainage system for at least $1 / 4$ mile;
(2) evaluate the downstream drainage system to a point at which the runoff from the development in a build out condition is less than 10 percent of the total runoff of the basin in its current development status. Developments in the basin that have been approved may be considered in place and their conditions of approval to exist if the work has started on those projects;
(3) evaluate the downstream drainage system throughout the following range of storms: 2, 5, 10, 25 year;
(4) The City Engineer may modify items 1, 2, 3 to require additional information to determine the impacts of the development or to delete the provision of unnecessary information.

FINDING:

The drainage analysis provided by TM Rippey Consulting Engineers, determined that there is not a downstream drainage capacity deficiency. Plans show provision for onsite detention using a pond with outflow limited by a series of orifi installed within a control manhole. Sizing is detailed in the submitted drainage analysis, which conforms to current Clean Water Services Resolution and Order 17-05.

This criterion is satisfied.

6. TMC 3-5-220 CRITERIA FOR REQUIRING ON-SITE DETENTION TO BE CONSTRUCTED.

The City shall determine whether the onsite facility shall be constructed. If the onsite facility is constructed, the development shall be eligible for a credit against Storm and Surface Water System Development Charges, as provided in City ordinance. On-site facilities shall be constructed when any of the following conditions exist:
(1) There is an identified downstream deficiency, as defined in TMC 3-5-210, and detention rather than conveyance system enlargement is determined to be the more effective solution...

FINDING:

The drainage analysis provided by TM Rippey Consulting Engineers, determined that there is not a downstream drainage capacity deficiency. Plans show provision for onsite detention using a pond with outflow limited by a series of orifi installed within a control manhole. Sizing is detailed in the submitted drainage analysis, which conforms to current Clean Water Services Resolution and Order 17-05.

This criterion is satisfied.
IV. TMC 3-5 PERMANENT ON-SITE WATER QUALITY FACILITIES

1. TMC 3-5-280 PLACEMENT OF WATER QUALITY FACILITIES.

Title III specifies that certain properties shall install water quality facilities for the purpose of removing phosphorous. No such water quality facilities shall be constructed within the defined area of existing or created wetlands unless a mitigation action, approved by the City, is constructed to replace the area used for the water quality facility.

FINDING:
The site's proposed water quality facilities are not located in wetlands or associated buffers.

This criterion is met.

2. TMC 3-5-290 PURPOSE OF TITLE.

The purpose of this title is to require new development and other activities which create impervious surfaces to construct or fund on-site or off-site permanent water quality facilities to reduce the amount of phosphorous entering the storm and surface water system.

FINDING:

The site's proposed water quality facility is designed in conformance with Clean Water Services Resolution and Order 17-05.

This criterion is met.

3. TMC 3-5-300 APPLICATION OF TITLE.

Title III of this Chapter shall apply to all activities which create new or additional impervious surfaces, except as provided in TMC 3-5.310.

FINDING:

The site's proposed water quality facilities, shown on sheet C 3, are designed in conformance with Clean Water Services Resolution and Order 17-05.

This criterion is met.

4. TMC 3-5-310 EXCEPTIONS.

(1) Those developments with application dates prior to July 1, 1990, are exempt from the requirements of Title III.
The application date shall be defined as the date on which a complete application for development approval is accepted by the City in accordance with City regulations.
(2) Construction of one and two family (duplex) dwellings are exempt from the requirements of Title III.
(3) Sewer lines, water lines, utilities or other land development that will not directly increase the amount of storm water run-off or pollution leaving the site once construction has been completed and the site is either restored to or not altered from its approximate original condition are exempt from the requirements of Title III.

FINDING:
No exceptions are requested.
This criterion is met.

5. TMC 3-5-320 DEFINITIONS.

(1) "Stormwater Quality Control Facility" refers to any structure or drainage way that is designed, constructed and maintained to collect and filter, retain, or detain surface water run-off during and after a storm event for the purpose of water quality improvement. It may also include, but is not limited to, existing features such as constructed wetlands, water quality swales, low impact development approaches ("LIDA"), and ponds which are maintained as stormwater quality control facilities.
(2) "Low impact development approaches" or "LIDA: means stormwater facilities constructed utilizing low impact development approaches used to temporarily store, route or filter run-off for the purpose of improving water quality. Examples include; but are not limited to, Porous Pavement, Green Roofs, Infiltration Planters/Rain Gardens, Flow-Through Planters, LIDA Swales, Vegetated Filter Strips, Vegetated Swales, Extended Dry Basins, Constructed Water Quality Wetland, Conveyance and Stormwater Art, and Planting Design and Habitats.
(3) "Water Quality Swale" means a vegetated natural depression, wide shallow ditch, or constructed facility used to temporarily store, route or filter run-off for the purpose of improving water quality.
(4) "Existing Wetlands" means those areas identified and delineated as set forth in the Federal Manual for Identifying the Delineating Jurisdictional Wetlands, January, 1989, or as amended, by a qualified wetlands specialist.
(5) "Created Wetlands" means those wetlands developed in an area previously identified as a non-wetland to replace, or mitigate wetland destruction or displacement.
(6) "Constructed Wetlands" means those wetlands developed as a water quality or quantity facility, subject to change and maintenance as such. These areas must be clearly defined and/or separated from existing or created wetlands. This separation shall preclude a free and open connection to such other wetlands.

6. TMC 3-5-330 PERMIT REQUIRED.

Except as provided in TMC 3-5-310, no person shall cause any change to improved or unimproved real property that will, or is likely to, increase the rate or quantity of run-off or pollution from the site without first obtaining a permit from the City and following the conditions of the permit.

FINDING:
The applicant is required to obtain a permit from the City ofTualatin to install an approved runoff flow control and treatment facility on the subject site.

This criterion is met.

7. TMC 3-5-340 FACILITIES REQUIRED.

For new development, subject to the exemptions of TMC 3-5-310, no permit for construction, or land development, or plat or site plan shall be approved unless the conditions of the plat, plan or permit approval require permanent stormwater quality control facilities in accordance with this Title III.

FINDING:

The applicant is required to obtain a permit from the City ofTualatin to install an approved runoff flow control and treatment facility on the subject site.

This criterion is met.

8. TMC 3-5-345 INSPECTION REPORTS.

The property owner or person in control of the property shall submit inspection reports annually to the City for the purpose of ensuring maintenance activities occur according to the operation and maintenance plan submitted for an approved permit or architectural review.

FINDING:

The submitted drainage analysis includes a maintenance and operation section outlining the maintenance requirements in conformance with Clean Water Services Resolution and Order 17-05.

This criterion is met.

9. TMC 3-5-350 PHOSPHOROUS REMOVAL STANDARD.

The stormwater quality control facilities shall be designed to remove 65 percent of the phosphorous from the runoff from 100 percent of the newly constructed impervious surfaces. Impervious surfaces shall include pavement, buildings, public and private roadways, and all other surfaces with similar runoff characteristics.

FINDING:
The site's proposed water quality facilities, shown on sheet C 3, are designed in conformance with Clean Water Services Resolution and Order 17-05.

This criterion is met.

10. TMC 3-5-360 DESIGN STORM.

The stormwater quality control facilities shall be designed to meet the removal efficiency of TMC 3-5-350 for a mean summertime storm event totaling 0.36 inches of precipitation falling in four hours with an average return period of 96 hours.

FINDING:

The site's proposed water quality facilities, shown on sheet C 3, are designed in conformance with Clean Water Services Resolution and Order 17-05, which includes the listed summer rainfall event.

This criterion is met.

11.TMC 3-5-370 DESIGN REQUIREMENTS.

The removal efficiency in TDC Chapter 35 specifies only the design requirements and are not intended as a basis for performance evaluation or compliance determination of the stormwater quality control facility installed or constructed pursuant to this Title III.

FINDING:

This is information.
This criterion is met.

12. TMC 3-5-390 FACILITY PERMIT APPROVAL.

A stormwater quality control facility permit shall be approved only if the following are met:
(1) The plat, site plan, or permit application includes plans and a certification prepared by an Oregon registered, professional engineer that the proposed stormwater quality control facilities have been designed in accordance with criteria expected to achieve removal efficiencies for total phosphorous required by this Title III. Clean Water Services Design and Construction Standards shall be used in preparing the plan for the water quality facility; and
(2) The plat, site plan, or permit application shall be consistent with the areas used to determine the removal required in TMC 3-5-350; and
(3) A financial assurance, or equivalent security acceptable to the City, is provided by the applicant which assures that the stormwater quality control facilities are constructed according to the plans established in the plat, site plan, or permit approval. The financial assurance may be combined with our financial assurance requirements imposed by the City; and
(4) A stormwater facility agreement identifies who will be responsible for assuring the long term compliance with the operation and maintenance plan.

FINDING:

Plans and storm drainage analysis prepared by TM Rippey Consulting Engineers and submitted with the application have been prepared and sealed by a registered professional civil engineer, licensed in the State of Oregon. Plans and analysis conform to Clean Water Services Resolution and Order 17-05.

The applicant is required to obtain a permit from the City of Tualatin to install the approved runoff flow control and treatment facilities on the subject site, provide a maintenance assurance and agreement, and provide a maintenance and operation plan.

This criterion is satisfied with conditions of approval PFR-6 and PFR-7.

B. CHAPTER 04-02: FIRE HYDRANT LOCATIONS AND RATES OF FLOW

I. TMC 4-2-010 HYDRANTS AND WATER SUPPLY FOR FIRE PROTECTION.

(1) Every application for a building permit and accompanying plans shall be submitted to the Building Division for review of water used for fire protection, the approximate location and size of hydrants to be connected, and the provisions for access and egress for firefighting equipment. If upon such review it is determined that the fire protection facilities are not required or that they are adequately provided for in the plans, the Fire and Life Safety Reviewer shall recommend approval to the City Building Official.
(2) If adequate provisions for such facilities are not made, the Fire and Life Safety Reviewer shall either recommend against approval of the plans or indicate to
the applicant in writing where the plans are deficient or recommend approval of plans subject to conditions.

FINDING:

Sheets C 4 and 4.1 show existing public fire hydrants at both the Myslony and $124^{\text {th }}$ frontages. The plans also a new private fire hydrant SE of the proposed building.

Plans shall be provided to TVF\&R for review and comment. The applicant is required to comply with their requirements.

This criterion is satisfied with conditions of approval PFR-9.

C. TDC CHAPTER 73: COMMUNITY DESIGN STANDARDS

I. TDC SECTION 73.270 GRADING.

(1) After completion of site grading, top-soil is to be restored to exposed cut and fill areas to provide a suitable base for seeding and planting.

FINDING:

All areas receiving landscape plant material will be provided with soil amendments according to final specifications.

This criterion is satisfied with conditions of approval PFR-4 and PFR-5.
(2) All planting areas shall be graded to provide positive drainage.

FINDING:
Plan sheets C 2 and 2.1 shows proposed planting areas sloping away from the building and direct runoff to the proposed storm drainage systems.

This criterion is satisfied with conditions of approval PFR-4 and PFR-5.
(3) Neither soil, water, plant materials nor mulching materials shall be allowed to wash across roadways or walkways.

FINDING:

Proposed landscaping will be bounded by curbs or the paved on-site pedestrian network so as to ensure that landscape materials will not wash across roadways or walkways.

This criterion is satisfied with conditions of approval PFR-4 and PFR-5.
(4) Impervious surface drainage shall be directed away from pedestrian walkways, dwelling units, buildings, outdoor private and shared areas and landscape areas except where the landscape area is a water quality facility.

FINDING:

As shown on sheets C3 and 3.1, storm sewer catch basins are proposed at strategic locations to capture and redirect surface drainage from parking, maneuvering, and walk areas.

This criterion is satisfied with conditions of approval PFR-4 and PFR-5.

II. TDC SECTION 73.400 ACCESS.

(1) The provision and maintenance of vehicular and pedestrian ingress and egress from private property to the public streets as stipulated in this Code are continuing requirements for the use of any structure or parcel of real property in the City of Tualatin. Access management and spacing standards are provided in this section of the TDC and TDC Chapter 75. No building or other permit shall be issued until scale plans are presented that show how the ingress and egress requirement is to be fulfilled. If the owner or occupant of a lot or building changes the use to which the lot or building is put, thereby increasing ingress and egress requirements, it shall be unlawful and a violation of this code to begin or maintain such altered use until the required increase in ingress and egress is provided.

FINDINGS:

This project is proposing a public driveway that will connect to SW Myslony Street and a second driveway connecting to SW $124^{\text {th }}$ Street. The driveway to SW Myslony Street will be full movement and the driveway to SW $124^{\text {th }}$ will be right in-right out movements only.

Lancaster Engineering Transportation Impact Study, dated 8.28.18, pages 12 to 13 states that the minimum required site distance criteria is met at the proposed SW Myslony Street site access relative to the intersection of SW Myslony Street with SW $124^{\text {th }}$ Avenue. Lancaster Engineering's findings regarding the right-in, right-out access along SW $124^{\text {th }}$ Avenue is "Given that the measured intersection sight distance is greater than the minimum required stopping sight distance, the access is expected to operate safely, granted occasional delays may occur along the northbound approach of SW 124 ${ }^{\text {th }}$ Avenue".

This criterion is met.
(6) Except as provided in TDC 53.100, all ingress and egress shall connect directly with public streets.

FINDINGS:

This project is proposing a public driveway that will connect to SW Myslony Street and a second driveway connecting to SW $124^{\text {th }}$ Street. The driveway to SW Myslony Street will be full movement and the driveway to SW $124^{\text {th }}$ will be right in-right out movements only.

This criterion is met.
(8) To afford safe pedestrian access and egress for properties within the City, a sidewalk shall be constructed along all street frontage, prior to use or occupancy of the building or structure proposed for said property. The sidewalks required by this section shall be constructed to City standards, except in the case of streets with inadequate right-of-way width or where the final street design and grade have not been established, in which case the sidewalks shall be constructed to a design and in a manner approved by the City Engineer. Sidewalks approved by the City Engineer may include temporary sidewalks and sidewalks constructed on private property; provided, however, that such sidewalks shall provide continuity with sidewalks of adjoining commercial developments existing or proposed. When a sidewalk is to adjoin a future street improvement, the sidewalk construction shall include construction of the curb and gutter section to grades and alignment established by the City Engineer.

FINDINGS:

Public sidewalks exist at both project frontages and will remain.
This criterion is met.
(9) The standards set forth in this Code are minimum standards for access and egress, and may be increased through the Architectural Review process in any particular instance where the standards provided herein are deemed insufficient to protect the public health, safety, and general welfare.

FINDINGS:

Lancaster Engineering Transportation Impact Study, dated 8.28.18, page 1 states:

- Trip generation of the proposed facility is 37 in morning peak hour and 33 in evening peak hour, both very small increases
- No significant trends or crash patterns were identified at the intersection of SW Myslony Street with SW 124 ${ }^{\text {th }}$ Avenue
- Upon removal or proper maintenance of any obstructing onsite foliage, adequate sight distance can be made available at the proposed site access intersections to ensure safe operation along SW Myslony Street and SW 124 ${ }^{\text {th }}$ Avenue
- The intersection of SW Myslony Street at SW 124 ${ }^{\text {th }}$ Avenue, under two-way stop control, is projected to operate at LOS F during the evening peak hour under year 2020 buildout conditions. However, upon installation of a planned traffic signal, the intersection is projected to operate at LOS B for all future year analysis scenarios. All other study intersections are currently operating acceptably per City of Tualatin standards and are projected to continue operating acceptably upon buildout of the proposed development through year 2020. No other operational mitigation is necessary or recommended.

This criterion is met.

Is section 12 needed for Industrial rather than 11?

(11) Minimum Access Requirements for Commercial, Public and Semi-Public Uses.
In the Central Design District, when driveway access is on local streets, not collectors or arterials and the building(s) on the property is(are) less than 5,000 square feet in gross floor area, or parking is the only use on the property, ingress and egress shall not be less than 24 feet. In all other cases, ingress and egress for commercial uses shall not be less than the following:

Required Parking Spaces	Minimum Number Required	Minimum Pavement Width	Minimum Pavement Walkways, Etc.
$1-99$	1	32 feet for first 50 feet from ROW, $24 '$ thereafter	Curbs required; walkway 1 side only
$100-249$	2	32 feet for first 50 feet from ROW, $24 '$ thereafter	Curbs required; walkway 1 side only
Over 250	As required by City Engineer	As required by City Engineer	As required by City Engineer

FINDINGS:
The project does not meet the criteria for 24 -foot wide access drives; 36 feet in width is used instead. A walkway is provided on the west side of the NE access drive.

This criterion is satisfied with conditions of approval PFR-10.
(14) Maximum Driveway Widths and Other Requirements.
(a) Unless otherwise provided in this chapter, maximum driveway widths shall not exceed 40 feet.

FINDINGS:

This project is proposing a 36 ft . wide public driveway that will connect to SW Myslony Street and a second 36 ft . wide public driveway connecting to SW $124^{\text {th }}$ Street. The driveway to SW Myslony Street will be full movement and the driveway to SW $124^{\text {th }}$ will be right in-right out movements only.

This criterion is met.
(b) Except for townhouse lots, no driveways shall be constructed within 5 feet of an adjacent property line, except when two adjacent property owners elect to provide joint access to their respective properties, as provided by Subsection (2).

As shown on the site plan, the driveway to Myslony Street is 5 ft . west of the east property line. The driveway to $124^{\text {th }}$ is 45 ft . north of the south property line.

This criterion is met.
(c) There shall be a minimum distance of 40 feet between any two adjacent driveways on a single property unless a lesser distance is approved by the City Engineer.

FINDINGS:

The two proposed driveways are on separate streets.
This criterion is met.
(15) Distance between Driveways and Intersections

Except for single-family dwellings, the minimum distance between driveways and intersections shall be as provided below. Distances listed shall be measured from the stop bar at the intersection.
(a) At the intersection of collector or arterial streets, driveways shall be located a minimum of 150 feet from the intersection.

FINDINGS:
Per Lancaster Engineering Transportation Impact Study, page 12 to 13, proposed separations of 286 feet along SW Myslony Street and 382 feet along SW $124^{\text {th }}$ both exceed the 150-foot requirement.

This criterion is met.
This section isn't needed as there are no nearby classified local streets Figure 11-1: Functional Classification and Traffic Signal Plan.
(b) At the intersection of two local streets, driveways shall be located a minimum of 30 feet from the intersection.

FINDINGS:

Both driveways are located more than 30 ft . from the intersection of SW Myslony and $124^{\text {th }}$. No other intersections are proximate to the site.

This criterion is met.

(d) When considering a public facilities plan that has been submitted as part of an Architectural Review plan in accordance with TDC 31.071(6), the City Engineer may approve the location of a driveway closer than 150 feet from the intersection of collector or arterial streets, based on written findings of fact in support of the decision. The written approval shall be incorporated into the decision of the City Engineer for the utility facilities portion of the Architectural Review plan under the process set forth in TDC 31.071 through 31.077.

FINDINGS:

This project is not requesting approval of a driveway located within 150 feet from the intersection of a collector or arterial street; therefore, this standard does not apply.

This criterion is met.
(16) Vision Clearance Area.
(a) Local Streets - A vision clearance area for all local street intersections, local street and driveway intersections, and local street or driveway and railroad intersections shall be that triangular area formed by the right-of-way lines along such lots and a straight line joining the right-of-way lines at points which are 10 feet from the intersection point of the right-of-way lines, as measured along such lines (see Figure 73-2 for illustration).
(b) Collector Streets - A vision clearance area for all collector/arterial street intersections, collector/arterial street and local street intersections, and collector/arterial street and railroad intersections shall be that triangular area formed by the right-of-way lines along such lots and a straight line joining the right-of-way lines at points which are 25 feet from the intersection point of the right-of-way lines, as measured along such lines. Where a driveway intersects with a collector/arterial street, the distance measured along the driveway line for the triangular area shall be 10 feet (see Figure 73-2 for illustration).
(c) Vertical Height Restriction - Except for items associated with utilities or publicly owned structures such as poles and signs and existing street trees, no vehicular parking, hedge, planting, fence, wall structure, or temporary or permanent physical obstruction shall be permitted between 30 inches and 8 feet above the established height of the curb in the clear vision area (see Figure 73-2 for illustration).

FINDINGS:

Landscape plant material or any other visual obstructions will be avoided and maintained in compliance with this statute.

This criterion is satisfied with conditions of approval PFR-17, PFR-18, and PFR-19.

D. TDC CHAPTER 74: PUBLIC IMPROVEMENT REQUIREMENTS

I. TDC SECTION 74.120 PUBLIC IMPROVEMENTS.

(1) Except as specially provided, all public improvements shall be installed at the expense of the applicant. All public improvements installed by the applicant shall be constructed and guaranteed as to workmanship and material as required by the Public Works Construction Code prior to acceptance by the City. No work shall be undertaken on any public improvement until after the construction plans have been approved by the City Engineer and a Public Works Permit issued and the required fees paid.

All public improvements proposed as part of this project (driveways, water, storm, and sanitary sewer connections) will be installed by the applicant in accordance with the Public Works Construction Code.

This criterion is satisfied with conditions of approval PFR-17, PFR-18, and PFR-19.

II. TDC SECTION 74.130 PRIVATE IMPROVEMENTS.

All private improvements shall be installed at the expense of the applicant. The property owner shall retain maintenance responsibilities over all private improvements.

FINDINGS:

The applicant will be responsible for proposed utility facilities located within the subject property.

This criterion is satisfied with conditions of approval PFR-19.

III. TDC SECTION 74.140 CONSTRUCTION TIMING.

(1) All the public improvements required under this chapter shall be completed and accepted by the City prior to the issuance of a Certificate of Occupancy; or, for subdivision and partition applications, in accordance with the requirements of the Subdivision regulations.
(2) All private improvements required under this chapter shall be approved by the City prior to the issuance of a Certificate of Occupancy; or for subdivision and partition applications, in accordance with the requirements of the Subdivision regulations.

FINDINGS:

All public and private improvements required under TDC Chapter 74 will be complete prior to receiving a Certificate of Occupancy.

This criterion is satisfied with conditions of approval PFR-19.

IV. TDC SECTION 74.210 MINIMUM STREET RIGHT-OF-WAY WIDTHS.

The width of streets in feet shall not be less than the width required to accommodate a street improvement needed to mitigate the impact of a proposed development. In cases where a street is required to be improved according to the standards of the TDC, the width of the right-of-way shall not be less than the minimums indicated in TDC Chapter 74, Public Improvement Requirements, Figures 74-2A through 74-2G.
(2) For development applications other than subdivisions and partitions, wherever existing or future streets adjacent to property proposed for development are of inadequate right-of-way width, the additional right-of-way necessary to comply with TDC Chapter 74, Public Improvement Requirements, Figures 74-2A through 74-2G of the Tualatin Community Plan shall be dedicated to the City for use by the public prior to issuance of any building permit for the proposed development. This right-of-way dedication shall be for the full width of the property abutting the roadway and, if required by the City Engineer, additional dedications shall be provided for slope and utility easements if deemed necessary.

FINDINGS:

Per agreement with the City Engineer, SW Myslony Street R.O.W. and pavement section will not be modified and the existing R.O.W. and 72 -foot width shall remain.

This criterion is satisfied.
(3) For development applications that will impact existing streets not adjacent to the applicant's property, and to construct necessary street improvements to mitigate those impacts would require additional right-of-way, the applicant shall be responsible for obtaining the necessary right-of-way from the property owner. A right-of-way dedication deed form shall be obtained from the City Engineer and upon completion returned to the City Engineer for acceptance by the City. On subdivision and partition plats the right-of-way dedication shall be accepted by the City prior to acceptance of the final plat by the City. On other development applications the right-of-way dedication shall be accepted by the City prior to issuance of building permits. The City may elect to exercise eminent domain and condemn necessary off-site right-of-way at the applicant's request and expense. The City Council shall determine when condemnation proceedings are to be used.

FINDINGS:
This section does not apply to the subject development.
This criterion is satisfied.

V. TDC SECTION 74.330 UTILITY EASEMENTS.

(1) Utility easements for water, sanitary sewer and storm drainage facilities, telephone, television cable, gas, electric lines and other public utilities shall be granted to the City.

FINDINGS:
This project is proposing a public utility easement along the frontages and to surround the DCVA by 5 feet.

This criterion is satisfied with conditions of approval PFR-3 and PFR-20.
(4) For development applications other than subdivisions and partitions, and for both on-site and off-site easement areas, a utility easement shall be granted to the City; building permits shall not be issued for the development prior to acceptance of the easement by the City. The City may elect to exercise eminent domain and condemn necessary off-site public utility easements at the applicant's request and expense. The City Council shall determine when condemnation proceedings are to be used.

FINDINGS:

This project is proposing a public utility easement along the frontages and to surround the DCVA by 5 feet.

This criterion is satisfied with conditions of approval PFR-3 and PFR-20.
(5) The width of the public utility easement shall meet the requirements of the Public Works Construction Code.

FINDINGS:
This project is proposing a public utility easement along the frontages and to surround the DCVA by 5 feet.

This criterion is satisfied with conditions of approval PFR-3 and PFR-20.

VI. TDC SECTION 74.420 STREET IMPROVEMENTS.

When an applicant proposes to develop land adjacent to an existing or proposed street, including land which has been excluded under TDC 74.220, the applicant should be responsible for the improvements to the adjacent existing or proposed street that will bring the improvement of the street into conformance with the Transportation Plan (TDC Chapter 11), TDC 74.425 (Street Design Standards), and the City's Public Works Construction Code, subject to the following provisions:
(1) For any development proposed within the City, roadway facilities within the right-of-way described in TDC 74.210 shall be improved to standards as set out in the Public Works Construction Code.

FINDINGS:

The only modifications within the right-of-way are vehicular access points as indicated in the civil drawings and landscape improvements. These modifications will be constructed in accordance with TDC 74.425. The curbside planting strip along SW Myslony Street will be refurbished to match City standards.

Pole lighting along SW $124^{\text {th }}$ Avenue and SW Myslony Street meets TDC requirements; no modification of the street and sidewalk lighting is proposed under this development.
(2) The required improvements may include the rebuilding or the reconstruction of any existing facilities located within the right-of-way adjacent to the proposed development to bring the facilities into compliance with the Public Works Construction Code.

No modifications to the existing street and sidewalk construction is necessary for compliance. Reconstruction work is limited to the areas covered in 74.420 (1) above.

FINDINGS:

I recently saw a sidewalk survey of Tualatin that indicated that the sidewalks on Myslony may not meet ADA slope requirements. Please take a look so your team is prepared as we will require sidewalks that are out of compliance to be improved.

Perlo Construction has cleared the existing sidewalk along SW Myslony Street of blackberries and other impediments and determined that cross-slopes do not exceed the 2% mandated by the American with Disabilities Act. See attached letter from Perlo Construction.
(3) The required improvements may include the construction or rebuilding of offsite improvements which are identified to mitigate the impact of the development.

FINDINGS:

Lancaster Engineering Transportation Impact Study, dated 8.28.18, page 1 notes the existing condition at the intersection of SW $124^{\text {th }}$ Avenue and SW Myslony Street, which is to be mitigated by the City's improvement of the intersection:

- The intersection of SW Myslony Street at SW $124^{\text {th }}$ Avenue, under two-way stop control, is projected to operate at LOS F during the evening peak hour under year 2020 buildout conditions. However, upon installation of a planned traffic signal, the intersection is projected to operate at LOS B for all future year analysis scenarios. All other study intersections are currently operating acceptably per City of Tualatin standards and are projected to continue operating acceptably upon buildout of the proposed development through year 2020. No other operational mitigation is necessary or recommended.

This criterion is satisfied.
(4) Where development abuts an existing street, the improvement required shall apply only to that portion of the street right-of-way located between the property line of the parcel proposed for development and the centerline of the right-of-way, plus any additional pavement beyond the centerline deemed necessary by the City Engineer to ensure a smooth transition between a new improvement and the existing roadway (half-street improvement). Additional right-of-way and street improvements and off-site right-of-way and street improvements may be required by the City to mitigate the impact of the development. The new pavement shall
connect to the existing pavement at the ends of the section being improved by tapering in accordance with the Public Works Construction Code.

FINDINGS:

The access point connections to the existing roadway pavement and sidewalk construction require localized modifications only as the existing construction is sound and meets City standards.
(6) All required street improvements shall include curbs, sidewalks with appropriate buffering, storm drainage, street lights, street signs, street trees, and, where designated, bikeways and transit facilities.

FINDINGS:

I recently saw a sidewalk survey of Tualatin that indicated that the sidewalks on Myslony may not meet ADA slope requirements. Please take a look so your team is prepared as we will require sidewalks that are out of compliance to be improved.

Both site frontages are improved to current City of Tualatin standards, including curbs, walks, street trees, storm drainage, public water and public sewer. Other than the two new driveways and utility connections described above, no additional public improvements are proposed.

This criterion is with conditions of approval PFR-17 and PFR-19.
(8) For development applications other than subdivisions and partitions, all street improvements required by this section shall be completed and accepted by the City prior to the issuance of a Certificate of Occupancy.

FINDINGS:

The applicant understands that all driveway construction and utility connections within the rights of way of the project frontages must be completed prior to the issuance of a Certificate of Occupancy.

This criterion is with conditions of approval PFR-17.
(11) Existing streets which abut the proposed development site shall be graded, constructed, reconstructed, surfaced or repaired as necessary in accordance with the Public Works Construction Code and TDC Chapter 11, Transportation Plan, and TDC 74.425 (Street Design Standards).

FINDINGS:

Both site frontages are improved to current City of Tualatin standards, including curbs, walks, street trees, storm drainage, public water and public sewer. Other than the two new driveways and utility connections described above, no additional public improvements are proposed.

This criterion is with conditions of approval PFR-17 and PFR-19.
(12) Sidewalks with appropriate buffering shall be constructed along both sides of each internal street and at a minimum along the development side of each external street in accordance with the Public Works Construction Code.

FINDINGS:

Both site frontages are improved to current City of Tualatin standards, including curbs, walks, street trees, storm drainage, public water and public sewer. Other than the two new driveways and utility connections described above, no additional public improvements are proposed.

This criterion is with conditions of approval PFR-17 and PFR-19.
(17) Intersections should be improved to operate at a level of service of at least D and E for signalized and unsignalized intersections, respectively.

FINDINGS:

Lancaster Engineering Transportation Impact Study, dated 8.28.18, page 1 notes the existing condition at the intersection of SW $124^{\text {th }}$ Avenue and SW Myslony Street, which is to be mitigated by the City's improvement of the intersection:

- The intersection of SW Myslony Street at SW $124^{\text {th }}$ Avenue, under two-way stop control, is projected to operate at LOS F during the evening peak hour under year 2020 buildout conditions. However, upon installation of a planned traffic signal, the intersection is projected to operate at LOS B for all future year analysis scenarios. All other study intersections are currently operating acceptably per City of Tualatin standards and are projected to continue operating acceptably upon buildout of the proposed development through year 2020. No other operational mitigation is necessary or recommended.

VII. TDC SECTION 74.425 STREET DESIGN STANDARDS.

(1) Street design standards are based on the functional and operational characteristics of streets such as travel volume, capacity, operating speed, and safety. They are necessary to ensure that the system of streets, as it develops, will be capable of safely and efficiently serving the traveling public while also accommodating the orderly development of adjacent lands.
(2) The proposed street design standards are shown in Figures 72A through 72G. The typical roadway cross sections comprise the following elements: right-ofway, number of travel lanes, bicycle and pedestrian facilities, and other amenities such as landscape strips. These figures are intended for planning purposes for new road construction, as well as for those locations where it is physically and economically feasible to improve existing streets

FINDINGS:
No new streets are proposed in this development.

This criterion is met.
(4) All streets shall be designed and constructed according to the preferred standard. The City Engineer may reduce the requirements of the preferred standard based on specific site conditions, but in no event will the requirement be less than the minimum standard. The City Engineer shall take into consideration the following factors when deciding whether the site conditions warrant a reduction of the preferred standard:
(a) Arterials:
(i) Whether adequate right-of-way exists
(ii) Impacts to properties adjacent to right-of-way
(iii) Current and future vehicle traffic at the location
(iv) Amount of heavy vehicles (buses and trucks).
(b) Collectors:
(i) Whether adequate right-of-way exists
(ii) Impacts to properties adjacent to right-of-way
(iii) Amount of heavy vehicles (buses and trucks)
(iv) Proximity to property zoned manufacturing or industrial.
(c) Local Streets:
(i) Local streets proposed within areas which have environmental constraints and/or sensitive areas and will not have direct residential access may utilize the minimum design standard. When the minimum design standard is allowed, the City Engineer may determine that no parking signs are required on one or both sides of the street.

FINDINGS:

SW Myslony Streetwas built to previous City standards consistent with its prior street classification. The existing 72-foot dimension doesn't meet the current preferred crosssection width of 74 feet Figures 74-2A-G: Street Design Standards, but is consistent with the surrounding area and the traffic study proves 72 feet and its current design is adequate with appropriate striping.

Both site frontages are improved to current City of Tualatin standards, including curbs, walks, street trees, storm drainage, public water and public sewer. Other than the two new driveways and utility connections described above, no additional public improvements are proposed.

This criterion is satisfied with conditions of approval PFR-15, and PFR-19.

VIII. TDC SECTION 74.430 STREETS, MODIFICATIONS OF REQUIREMENTS IN CASES OF UNUSUAL CONDITIONS.

(1) When, in the opinion of the City Engineer, the construction of street improvements in accordance with TDC 74.420 would result in the creation of a hazard, or would be impractical, or would be detrimental to the City, the City

Engineer may modify the scope of the required improvement to eliminate such hazardous, impractical, or detrimental results. Examples of conditions requiring modifications to improvement requirements include but are not limited to horizontal alignment, vertical alignment, significant stands of trees, fish and wildlife habitat areas, the amount of traffic generated by the proposed development, timing of the development or other conditions creating hazards for pedestrian, bicycle or motor vehicle traffic. The City Engineer may determine that, although an improvement may be impractical at the time of development, it will be necessary at some future date. In such cases, a written agreement guaranteeing future performance by the applicant in installing the required improvements must be signed by the applicant and approved by the City.
(2) When the City Engineer determines that modification of the street improvement requirements in TDC 74.420 is warranted pursuant to subsection (1) of this section, the City Engineer shall prepare written findings of modification. The City Engineer shall forward a copy of said findings and description of modification to the applicant, or his authorized agent, as part of the Utility Facilities Review for the proposed development, as provided by TDC 31.072. The decision of the City Engineer may be appealed to the City Council in accordance with TDC 31.076 and 31.077.
(3) To accommodate bicyclists on streets prior to those streets being upgraded to the full standards, an interim standard may be implemented by the City. These interim standards include reduction in motor vehicle lane width to 10 feet [the minimum specified in AASHTO's A Policy on Geo-metric Design of Highways and Streets (1990)], a reduction of bike lane width to 4-feet (as measured from the longitudinal gutter joint to the centerline of the bike lane stripe), and a paint-striped separation 2 to 4 feet wide in lieu of a center turn lane. Where available roadway width does not provide for these minimums, the roadway can be signed for shared use by bicycle and motor vehicle travel. When width constraints occur at an intersection, bike lanes should terminate 50 feet from the intersection with appropriate signing.

FINDINGS:

Both site frontages are improved to current City of Tualatin standards, including curbs, walks, street trees, storm drainage, public water and public sewer. Other than the two new driveways and utility connections described above, no additional public improvements are proposed.

This criterion is satisfied with conditions of approval PFR-13, PFR-15, and PFR-19.

IX. TDC 74.440 STREETS, TRAFFIC STUDY REQUIRED

(1) The City Engineer may require a traffic study to be provided by the applicant and furnished to the City as part of the development approval process as provided by this Code, when the City Engineer determines that such a study is necessary in connection with a proposed development project in order to:
(a) Assure that the existing or proposed transportation facilities in the vicinity of the proposed development are capable of accommodating the amount of traffic that is expected to be generated by the proposed development, and/or
(b) Assure that the internal traffic circulation of the proposed development will not result in conflicts between on-site parking movements and/or on-site loading movements and/or on-site traffic movements, or impact traffic on the adjacent streets.

FINDINGS:

Traffic volumes and movements on SW $124^{\text {th }}$ Avenue and SW Myslony Street were studies by Lancaster Engineering. The Site access along $124^{\text {th }}$ Avenue will perform at at Level of Service (LOS) of A or B depending on time of day. The site access from SW Myslony Street will operate at a LOS of A. The intersection of SW $124^{\text {th }}$ Avenue and Myslony Street already experiences LOS E periods (min. acceptable by City standards), but is anticipated would experience LOS F periods by 2020 under the present 2-way stop control. The City's plan to signalize this intersection as part of the approved and funded 2018 Bond Issue will result in a LOS of B otr better for all future year analysis scenarios. Please see Lancaster Engineering Traffic Impact Study for additional information.
(2) The required traffic study shall be completed prior to the approval of the development application.

FINDINGS:

Lancaster Engineering Transportation Impact Study, dated 8.28.18.
This criterion is met.
(3) The traffic study shall include, at a minimum:
(a) an analysis of the existing situation, including the level of service on adjacent and impacted facilities.
(b) an analysis of any existing safety deficiencies.
(c) proposed trip generation and distribution for the proposed development.
(d) projected levels of service on adjacent and impacted facilities.
(e) recommendation of necessary improvements to ensure an acceptable level of service for roadways and a level of service of at least D and E for signalized and unsignalized intersections respectively, after the future traffic impacts are considered.
(f) The City Engineer will determine which facilities are impacted and need to be included in the study.
(g) The study shall be conducted by a registered engineer.
FINDINGS:
Please see Lancaster Engineering Transportation Impact Study, dated 8.28.18.
(4) The applicant shall implement all or a portion of the improvements called for in the traffic study as determined by the City Engineer.

FINDINGS:

Please see Lancaster Engineering Transportation Impact Study, dated 8.28.18
This criterion is met.

X. TDC SECTION 74.470 STREET LIGHTS.

(1) Street light poles and luminaries shall be installed in accordance with the Public Works Construction Code.
(2) The applicant shall submit a street lighting plan for all interior and exterior streets on the proposed development site prior to issuance of a Public Works Permit.

FINDINGS:

This project is not proposing to install street lights as part of this application. Street illumination will be shown to be adequate to current Public Works Construction Code or street lights will be constructed to meet illumination standards.

Existing illumination levels along SW $124^{\text {th }}$ Avenue and SW Myslony Street via pole lights installed as part of the City street improvements meet IES guidelines for roadway lighting. An existing roadway light adjacent to the SW $124^{\text {th }}$ access adequately lights the access point. An existing pole light on the north side of SW Myslony Street adequately lights the NE site access.

This criterion is satisfied with conditions of approval PFR-11, PFR-17, and PFR-20.

XI. TDC SECTION 74.485 STREET TREES.

(2) In nonresidential subdivisions and partitions street trees shall be planted by the owners of the individual lots as development occurs.
(3) The Street Tree Ordinance specifies the species of tree which is to be planted and the spacing between trees.

FINDINGS:

There are no new street trees required or proposed in the development.

XII. TDC SECTION 74.610 WATER SERVICE.

(1) Water lines shall be installed to serve each property in accordance with the Public Works Construction Code. Water line construction plans shall be submitted to the City Engineer for review and approval prior to construction.

FINDINGS:

As shown on Sheet C4, this application is proposing a fire service connection to an existing 8-inch public fire service lateral at the SW $124^{\text {th }}$ frontage and a domestic water connection at the existing public water main in SW Myslony Street. Water line designs will be in conformance with the Public Works Construction Code.

The plans include a valve at the connection to the public main for domestic service. A valve already exists for the fire service.

The applicant will submit water system plans that show location and other details prior to obtaining a Building Permit. A public works construction permit for the domestic and fire connections will be obtained. The applicant has not applied for a public works permit for these improvements. The applicant will need to submit water system plans that show location of the water lines, grade, materials, and other details prior to obtaining a public works permit.

This criterion is satisfied with conditions of approval PFR-2, PFR-3, PFR-17, and PFR20.
(2) If there are undeveloped properties adjacent to the subject site, public water lines shall be extended by the applicant to the common boundary line of these properties. The lines shall be sized to provide service to future development, in accordance with the City's Water System Master Plan, TDC Chapter 12.

FINDINGS:

The property to the east is currently developed as a commercial facility with existing public water service from SW Myslony. The property to the south is undeveloped. Public water main exists in SW $124^{\text {th }}$ and this property can access this existing public main. As such, this project is not proposing to extend the existing public water mains in the frontage streets.

This criterion is satisfied.
(3) As set forth is TDC Chapter 12, Water Service, the City has three water service levels. All development applicants shall be required to connect the proposed development site to the service level in which the development site is located. If the development site is located on a boundary line between two service levels the applicant shall be required to connect to the service level with the higher reservoir elevation. The applicant may also be required to install or provide pressure reducing valves to supply appropriate water pressure to the properties in the proposed development site.

FINDINGS:

As shown on Sheet C4, this application is proposing a fire service connection to an existing 8-inch public fire service lateral at the SW 124 th frontage and a domestic water connection at the existing public water main in SW Myslony Street. Water line designs will be in conformance with the Public Works Construction Code. The sheet also indicates a fire DCVA will be provided at the SW 124 ${ }^{\text {th }}$ right of way and a reduced pressure principal backflow preventer will be provided at the domestic water meter to be installed at SW Myslony Street.

The plans include a valve at the connection to the public main for domestic service. A valve already exists for the fire service.

This criterion is satisfied with conditions of approval PFR-2, PFR-3, PFR-17, and PFR20.

XIII. TDC SECTION 74.620 SANITARY SEWER SERVICE.

(1) Sanitary sewer lines shall be installed to serve each property in accordance with the Public Works Construction Code. Sanitary sewer construction plans and calculations shall be submitted to the City Engineer for review and approval prior to construction.

FINDINGS:

As shown on Sheet C4.1, this project is proposing a six-inch sanitary sewer connection to an existing public sanitary lateral at SW $124^{\text {th }}$, near the southwest corner of the site. A clean out will be installed at the right of way. Sanitary sewer line designs will be in conformance with the Public Works Construction Code and the current international plumbing code.

This criterion is satisfied with conditions of approval PFR-1, PFR-17, and PFR-19.
(2) If there are undeveloped properties adjacent to the proposed development site which can be served by the gravity sewer system on the proposed development site, the applicant shall extend public sanitary sewer lines to the common boundary line with these properties. The lines shall be sized to convey flows to include all future development from all up stream areas that can be expected to drain through the lines on the site, in accordance with the City's Sanitary Sewer System Master Plan, TDC Chapter 13.

FINDINGS:

The property to the east is currently developed as a commercial facility with an existing public service connection to the existing public sanitary sewer in SW Myslony. The property to the south is undeveloped. A public sanitary main exists in SW $124^{\text {th }}$ and this property can access this existing public main. As such, this project is not proposing to extend the existing public sanitary sewer mains in the frontage streets.

This criterion is satisfied.

XIV. TDC SECTION 74.630 STORM DRAINAGE SYSTEM.

(1) Storm drainage lines shall be installed to serve each property in accordance with City standards. Storm drainage construction plans and calculations shall be submitted to the City Engineer for review and approval prior to construction.

Sheets C 3 and 3.1 show provision for on-site collection, conveyance, and detention using a pond with outflow limited by a series of orifi installed within a control manhole. Runoff treatment is provided by a Contech Stormfilter vault with treatment cartridges and by a vegetated treatment swale. Sizing of these facilities is detailed in the submitted drainage analysis, which conforms to current Clean Water Services Resolution and Order 17-05. Following treatment and detention, runoff is directed to an existing public storm drainage system located in SW Myslony Street at the site frontage.

This criterion is satisfied with conditions of approval PFR-4, PFR-5, PFR-13, PFR-17, and PFR-19.
(2) The storm drainage calculations shall confirm that adequate capacity exists to serve the site. The discharge from the development shall be analyzed in accordance with the City's Storm and Surface Water Regulations.

FINDINGS:

The drainage analysis provided with the application determined that there is not a downstream drainage capacity deficiency. Plans show provision for on-site detention using a pond with outflow limited by a series of orifi installed within a control manhole. Sizing is detailed in the submitted drainage analysis, which conforms to current Clean Water Services Resolution and Order 17-05.

This criterion is satisfied with conditions of approval PFR-6, PFR-7, PFR-17, and PFR19.
(3) If there are undeveloped properties adjacent to the proposed development site which can be served by the storm drainage system on the proposed development site, the applicant shall extend storm drainage lines to the common boundary line with these properties. The lines shall be sized to convey expected flows to include all future development from all up stream areas that will drain through the lines on the site, in accordance with the Tualatin Drainage Plan in TDC Chapter 14.

FINDINGS:

The adjacent undeveloped property to the south is significantly lower than the development site and drains southerly to an existing wetland and stream. As such, runoff from that site cannot reasonably be directed to the subject development site and extension of drainage facilities to the undeveloped parcel to the south is not appropriate.

This criterion is satisfied.
XV. TDC SECTION 74.640 GRADING.
(1) Development sites shall be graded to minimize the impact of storm water runoff onto adjacent properties and to allow adjacent properties to drain as they did before the new development.

FINDINGS:

Grading shown on plan sheets C 2 and 2.1 shows all runoff from improvement areas on site will be collected within the property, treated, and detained prior to discharge to the existing public storm system in SW Myslony Street. No runoff to adjacent properties will occur and no changes to preexisting offsite drainage patterns will occur with this development.

This criterion is satisfied with conditions of approval PFR-4, PFR-5, PFR-13, PFR-17, and PFR-19.
(2) A development applicant shall submit a grading plan showing that all lots in all portions of the development will be served by gravity drainage from the building crawl spaces; and that this development will not affect the drainage on adjacent properties. The City Engineer may require the applicant to remove all excess material from the development site.

FINDINGS:

Grading shown on plan sheets C 2 and 2.1 shows all runoff from improvement areas on site will be collected within the property, treated, and detained prior to discharge to the existing public storm system in SW Myslony Street. No runoff to adjacent properties will occur and no changes to preexisting offsite drainage patterns will occur with this development. The proposed building does not have a crawl space.

This criterion is satisfied with conditions of approval PFR-4, PFR-5, PFR-13, PFR-17, and PFR-19.

XVI. TDC SECTION 74.650 WATER QUALITY, STORM WATER DETENTION AND EROSION CONTROL.

The applicant shall comply with the water quality, storm water detention and erosion control requirements in the Surface Water Management Ordinance. If required:
(2) On all other development applications, prior to issuance of any building permit, the applicant shall arrange to construct a permanent on-site water quality facility and storm water detention facility and submit a design and calculations indicating that the requirements of the Surface Water Management Ordinance will be met and obtain a Stormwater Connection Permit from Clean Water Services.

FINDINGS:

Sheets C 3 and 3.1 show provision for on-site collection, conveyance, and detention using a pond with outflow limited by a series of orifi installed within a control manhole. Runoff treatment is provided by a Contech Stormfilter vault with treatment cartridges and by a vegetated treatment swale. Sizing of these facilities is detailed in the submitted drainage analysis, which conforms to current Clean Water Services Resolution and

Order 17-05. Following treatment and detention, runoff is directed to an existing public storm drainage system located in SW Myslony Street at the site frontage.

A clean water service storm water connection permit will be obtained during the building and site development permitting process.

This criterion is satisfied with conditions of approval PFR-6 and PFR-12.
(3) For on-site private and regional non-residential public facilities, the applicant shall submit a stormwater facility agreement, which will include an operation and maintenance plan provided by the City, for the water quality facility for the City's review and approval. The applicant shall submit an erosion control plan prior to issuance of a Public Works Permit. No construction or disturbing of the site shall occur until the erosion control plan is approved by the City and the required measures are in place and approved by the City.

FINDINGS:

The application materials indicate disturbance area of 3.75 acres. The applicant has obtained a 1200CN Construction Erosion Control permit from Clean Water Services as agent for Oregon DEQ and has obtained a grading (EXGR 18 1508) and erosion control permit (EC 1218 1511) from the City of Tualatin as required prior to issuance of permits allowing construction activities.

Sheets C 3 and 3.1 show provision for on-site collection, conveyance, and detention using a pond with outflow limited by a series of orifi installed within a control manhole. Runoff treatment is provided by a Contech Stormfilter vault with treatment cartridges and by a vegetated treatment swale. Sizing of these facilities is detailed in the submitted drainage analysis, which conforms to current Clean Water Services Resolution and Order 17-05. Following treatment and detention, runoff is directed to an existing public storm drainage system located in SW Myslony Street at the site frontage.

This criterion is satisfied with conditions of approvalPFR-4, PFR-5, PFR-17, and PFR19.

XVII. TDC 74.660 UNDERGROUND

(1) All utility lines including, but not limited to, those required for gas, electric, communication, lighting and cable television services and related facilities shall be placed underground. Surface-mounted transformers, surfacemounted connection boxes and meter cabinets may be placed above ground. Temporary utility service facilities, high capacity electric and communication feeder lines, and utility transmission lines operating at 50,000 volts or above may be placed above ground. The applicant shall make all necessary arrangements with all utility companies to provide the underground services. The City reserves the right to approve the location of all surface-mounted transformers.

FINDINGS:

The project utility lines for incoming service will all be placed below grade and conform to City standards.

This criterion is satisfied with conditions of approval PFR-14, PFR-17, and PFR-19.
(2) Any existing overhead utilities may not be upgraded to serve any proposed development. If existing overhead utilities are not adequate to serve the proposed development, the applicant shall, at their own expense, provide an underground system. The applicant shall be responsible for obtaining any offsite deeds and/or easements necessary to provide utility service to this site; the deeds and/or easements shall be submitted to the City Engineer for acceptance by the City prior to issuance of the Public Works Permit.

FINDINGS:

There are no existing overhead utilities serving this site.
This criterion is satisfied with conditions of approval PFR-14, PFR-17, and PFR-19.
XVIII. TDC SECTION 74.670 EXISTING STRUCTURES.
(1) Any existing structures requested to be retained by the applicant on a proposed development site shall be connected to all available City utilities at the expense of the applicant.

FINDINGS:

The existing residence on the site will remain during construction to serve as a project field office. As construction nears completion the utility services will be disconnected and the structure demolished.

This criterion is satisfied with conditions of approval PFR-14, PFR-17, and PFR-19.
(2) The applicant shall convert any existing overhead utilities serving existing structures to underground utilities, at the expense of the applicant.

FINDINGS:

The existing residence is not served by overhead utilities.
This criterion is satisfied with conditions of approval PFR-14, PFR-17, and PFR-19.

Four-S Corp Distribution Center

Transportation Impact Study
Tualatin, Oregon

Date:
August 28, 2018
Prepared for:
Skip Stanaway Four-S Corp

Prepared by: Daniel Stumpf, EI William Farley, PE

321 SW 4th Ave., Suite 400 | Portland, 0 R 97204 | 503.248 .0313 | lancasterengineering.com

ξ

Table of Contents

Executive Summary 1
Project Description and Location 2
Introduction 2
Project and Location Description 2
Vicinity Streets 2
Study Intersections 3
Traffic Counts 3
Site Trips 6
Trip Generation 6
Trip Distribution 6
Future Traffic Volumes 8
Background Volumes 8
Background Volumes plus Site Trips 9
Safety Analysis 12
Crash Data Analysis 12
Sight Distance Analysis 12
Operational Analysis 14
Intersection Capacity Analysis 14
Conclusions 16
Appendix 17

Table of Figures
Figure 1: Vicinity Map 4
Figure 2: Existing Conditions 5
Figure 3: Site Trip Assignment 7
Figure 4: Year 2020 Background Conditions 10
Figure 5: Year 2020 Buildout Conditions 11

Table of Tables

Table 1: Vicinity Roadway Descriptions 3
Table 2: Trip Generation Summary 6
Table 3: Intersection Capacity Analysis Summary 15

Executive Summary

1. The proposed Four-S Corp Distribution Center will include the construction of a 52,500 square foot distribution center located at 12200 SW Myslony Avenue in Tualatin, Oregon.
2. The trip generation calculations show that the proposed development is projected to generate 37 trips during the morning peak hour, 33 trips during the evening peak hour, and 260 average weekday trips.
3. No significant trends or crash patterns were identified at the intersection of SW Myslony Street at SW 124 ${ }^{\text {th }}$ Avenue that were indicative of safety concerns.
4. Upon removal or proper maintenance of any obstructing onsite foliage, adequate sight distance can be made available at the proposed site access intersections to ensure safe operation along SW Myslony Street and SW 124th Avenue. No other sight distance mitigation is necessary or recommended.
5. The intersection of SW Myslony Street at SW 124 ${ }^{\text {th }}$ Avenue, under two-way stop-control, is projected to operate at LOS F during the evening peak hour under year 2020 buildout conditions. However, upon installation of a planned traffic signal, the intersection is projected to operate at LOS B for all future year analysis scenarios. All other study intersections are currently operating acceptably per City of Tualatin standards and are projected to continue operating acceptably upon buildout of the proposed development through year 2020. No other operational mitigation is necessary or recommended.

Project Description and Location

Introduction

The proposed Four-S Corp Distribution Center will include the construction of a 52,500 square foot distribution center located at 12200 SW Myslony Avenue in Tualatin, Oregon. Based on correspondence with City of Tualatin staff, the report conducts safety and capacity/level of service analyses at the following intersections:

- SW Myslony Street at SW 124 ${ }^{\text {th }}$ Avenue;
- Site access at SW Myslony Street; and
- \quad Site access at SW $124^{\text {th }}$ Avenue (right-in/right-out only).

The purpose of this study is to determine whether the transportation system within the vicinity of the site is capable of safely and efficiently supporting the existing and proposed uses and to determine any mitigation that may be necessary to do so. Detailed information on traffic counts, trip generation calculations, safety analyses, and level of service calculations is included in the appendix to this report.

Project and Location Description

The project site is located north of SW Cimino Street, south of SW Myslony Street, and east SW $124^{\text {th }}$ Avenue in Tualatin, Oregon, located near the western edge of the city limits. The site is predominately surrounded by industrial land-use in all directions, except to the south which is currently undeveloped.

The project site includes a single tax lot, lot 1600 , which encompasses an approximate total of 5.41 acres. The eastern portion of the site is developed with a single-family detached house and storage structures. The proposed distribution center will utilize an existing access along SW Myslony Street while constructing a right-in/right-out (RIRO) access along SW 124 ${ }^{\text {th }}$ Avenue.

Vicinity Streets

The proposed development is expected to impact the following two nearby vicinity roadways: SW Myslony Street and SW 124 th Avenue. Table 1 provides a description of each of the vicinity roadways.

ξ

Table 1: Vicinity Roadway Descriptions

| Roadway | Jurisdiction | Functional
 Classification | Cross-
 Section | Speed | On-street
 Parking | Bicycle
 Lanes | Curbs Sidewalks | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SW Myslony
 Street | City of Tualatin | Major Collector | 2 Lanes | 20 mph
 Statutory | Permitted
 Both Sides | None | Partial
 Both
 Sides | Partial Both
 Sides |
| SW 124th
 Avenue | City of Tualatin | Major Arterial | 5 Lanes | 45 mph | Not
 Permitted | Both
 Sides | Both
 Sides | Both Sides |

Note: Functional Classification based on City of Tualatin's Transportation System Plan.

Study Intersections

The intersection of SW Myslony Street at SW $124^{\text {th }}$ Avenue is a four-legged intersection that is stopcontrolled the eastbound and westbound approaches. The northbound and southbound approaches of SW $124^{\text {th }}$ Avenue each have a center two-way left-turn lane (allowing left-turns from their respective approaches), one through lane, one shared through/right-turn lane, and a bicycle lane to the right of the outermost standard travel lane. The eastbound and westbound approaches each have one shared lane for all turning movements. Crosswalks are unmarked across all four intersection legs.

It should be noted that the intersection is planned for signalization in the near future. For the purposes of this analysis, the intersection was analyzed assuming operation under two-way stop-control and traffic signal control for future year 2020 conditions.

A vicinity map displaying the project site, vicinity streets, and the study intersections with their associated lane configurations is shown in Figure 1 on page 4.

Traffic Counts

Traffic counts were conducted at the intersection of SW Myslony Street at SW $124^{\text {th }}$ Avenue on Tuesday, July 10th , 2018, from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM. Data was used from intersection's morning and evening peak hours. To estimate existing traffic volumes at the site access intersections along SW Myslony Street and SW 124th Avenue, traffic volumes were balanced with the intersection of SW Myslony Street at SW 124th Avenue.

Figure 2 on page 5 shows the existing morning and evening peak hour traffic volumes at the study intersections.

Site Trips

Trip Generation

The proposed Four-S Corp Distribution Center will include the construction of a 52,500 square foot distribution center. To estimate the number of trips generated by the proposed development, trip rates from the Trip Generation Manual ${ }^{1}$ were used. At the direction of City of Tualatin staff, data from land-use codes 110, General Light Industrial, was used to estimate the proposed development's trip generation based on the square footage of gross floor area.

The trip generation calculations show that the proposed development is projected to generate 37 trips during the morning peak hour, 33 trips during the evening peak hour, and 260 average weekday trips. The trip generation estimates are summarized in Table 2. Detailed trip generation calculations are included in the technical appendix to this report.

Table 2: Trip Generation Summary

	ITE Code	Size	Morning Peak Hour			Evening Peak Hour			Weekday Total
			Enter	Exit	Total	Enter	Exit	Total	
Proposed Distribution Center	110	52,500 sq.ft.	33	4	37	4	29	33	260

Trip Distribution

The directional distribution of site trips to/from the project site was estimated based on locations of likely trip destinations, locations of major transportation facilities in the site vicinity, and existing travel patterns at the study intersections. The following trip distribution was estimated and used for analysis:

- Approximately 40 percent of site trips will travel to/from the north along SW $124^{\text {th }}$ Avenue;
- Approximately 40 percent of site trips will travel to/from the south along SW $124^{\text {th }}$ Avenue; and
- Approximately 20 percent of site trips will travel to/from the east along SW Myslony Street.

The trip distribution and assignment for the site trips generated by the proposed development during the morning and evening peak hours is shown in Figure 3 on page 7.

[^0]

Future Traffic Volumes

Background Volumes

To provide analysis of the impact of the proposed development on the nearby transportation facilities, an estimate of future traffic volumes is required. In order to calculate the future traffic volumes a compounded growth rate of two percent per year for an assumed buildout conditions of two years was applied to the measured existing traffic volumes to approximate year 2020 background conditions.

In addition to the expected background traffic growth within the site vicinity, there are two nearby transportation projects which are expected to significantly impact future volumes along SW $124^{\text {th }}$ Avenue and SW Myslony Street. The two projects include the following:

- SW 124 ${ }^{\text {th }}$ Avenue extension from Tualatin-Sherwood Road to Grahams Ferry Road; and
- SW Myslony Street extension (bridge) over Hedges Creek to SW 112 ${ }^{\text {th }}$ Avenue.

Additional rerouted traffic volumes associated with the two aforementioned projects were accounted for in the year 2020 background volumes. The following sections detail methodologies used to project rerouted volumes with completion of each project.

SW $124^{\text {th }}$ Avenue Extension

To project rerouted traffic volumes associated with the SW 124 th Avenue extension, methodologies similar to those conducted within with Majestic SW 115th Avenue Industrial Project Transportation Impact Analysis (TIA), dated August $30^{\text {th }}, 2016$, were used. The following data and assumptions detail the process used to determine rerouted volumes.

1. Morning and evening peak period (two-hour) volumes along SW 124th Avenue, between SW Myslony Street and SW Tualatin-Sherwood Road, were referenced from Metro's 2010 base and 2040 future conditions modeling data.
2. Assuming a 2 percent per year linear growth, the 2040 volumes were reduced over a 30 -year period to reflect 2010 base conditions plus rerouted traffic volumes.
3. The 2010 base volumes were subtracted from the reduced 2040 volumes to obtain rerouted traffic associated with the SW $124^{\text {th }}$ Avenue extension.
4. The rerouted traffic was grown linearly at a rate of 2 percent per year over a 10 -year period to reflect 2020 background conditions.
5. A factor of 0.55 was applied to the 2020 two-hour reroute volumes to reflect peak volumes during a single hour.

ξ

SW Myslony Street Extension

To project rerouted traffic volumes associated with the SW Myslony Street extension, similar methodologies as described for the SW 124th Avenue Extension section were used, with the exception that 2010 base volumes along SW Myslony Street are not provided within the Metro modeling data. The following data and assumptions detail the process used to determine rerouted volumes.

1. Morning and evening peak period (two-hour) volumes along SW Myslony Street were referenced from Metro's 2040 future conditions modeling data.
2. Assuming a 2 percent per year linear growth, the 2040 volumes were reduced over a 20 -year period to reflect 2020 conditions plus rerouted traffic volumes.
3. A factor of 0.55 was applied to the 2020 two-hour volumes to reflect peak volumes during a single hour.
4. The 2020 background condition volumes (calculated from the measured existing volumes) were subtracted from the 2020 Metro volumes to obtain rerouted traffic associated with the SW Myslony Street extension.

Rerouted volumes associated with the SW 124th Avenue and SW Myslony Street extension projects are shown in Figure A within the technical appendix. Figure 4 on page 10 shows the projected year 2020 background traffic volumes at the study intersections (with rerouted traffic) during the morning and evening peak hours.

Background Volumes plus Site Trips

Peak hour trips calculated to be generated by the proposed development, as described earlier within the Site Trips section, were added to the projected year 2020 background traffic volumes to obtain the expected year 2020 buildout volumes.

Figure 5 on page 11 shows the projected 2020 site buildout year traffic volumes at the study intersections during the morning and evening peak hours.

AM PEAK HOUR
PM PEAK HOUR

SW Myslony Street

TRAFFIC VOLUMES
Year 2020 Background Conditions
AM \& PM Peak Hours

Safety Analysis

Crash Data Analysis

Using data obtained from the Oregon Department of Transportation's Crash Analysis and Reporting Unit, a review of the most recent available five years of crash history (January 2012 to December 2016) at the intersection of SW Myslony Street at SW 124th Avenue was performed. The crash data was evaluated based on the number of crashes, the type of collisions, the severity of the collisions, and the resulting crash rate for the intersection. Crash rates provide the ability to compare safety risks at different intersections by accounting for both the number of crashes that have occurred during the study period and the number of vehicles that typically travel through the intersection. Crash rates were calculated using the common assumption that traffic counted during the evening peak period represents 10 percent of the annual average daily traffic (AADT) at the intersection. Crash rates in excess of 1.0 crashes per million entering vehicles (CMEV) may be indicative of design deficiencies and therefore require a need for further investigation and possible mitigation.

The intersection of SW Myslony Street at SW 124 ${ }^{\text {th }}$ Avenue had four reported crashes during the analysis period. The crashes consisted of three turning-movement collisions and one sideswipe collision. Of the reported crashes, two were classified as "Property Damage Only" (PDO), one was classified as "Possible Injury - Complaint of Pain" (Injury C), and one was classified as "Non-Incapacitating Injury" (Injury B). The crash rate at the intersection was calculated to be 0.30 CMEV.

Based on the most recent five years of available crash data, no significant trends or crash patterns were identified at the intersection of SW Myslony Street at SW 124th Avenue that were indicative of safety concerns.

Sight Distance Analysis

Intersection sight distance was measured for the westernmost existing access along SW Myslony Street and the proposed RIRO access along SW 124th Avenue. Sight distance was measured and evaluated in accordance with standards established in A Policy on Geometric Design of Highways and Streets ${ }^{2}$. According to AASHTO, the driver's eye is assumed to be 15 feet from the near edge of the nearest travel lane of the intersecting street and at a height of 3.5 feet above the minor-street approach pavement. The vehicle driver's eye-height along the major-street approach is assumed to be 3.5 feet above the cross-street pavement.

The following sections detail sight distance measurements at the two site access intersections.

Site Access at SW Myslony Street

Based on a statutory business district speed of 20 mph , the minimum recommended intersection sight distance to ensure safe and efficient operation of the existing access intersection is 225 feet to the east and

[^1]
b

west. With removal or proper maintenance of roadside foliage, intersection sight distance to the east was measured to be 286 feet prior to encroaching beyond an adjacent property's fence line. Sight distance to the west was measured back the intersection of SW Myslony Street at SW 124th Avenue.

Site Access at SW Myslony Street

Based on a posted speed of 45 mph , the minimum recommended intersection sight distance for right-turning vehicles is 430 feet to the south. Provided any obstructing onsite and roadside foliage is removed or properly maintained, intersection sight distance to the south was measured to be 382 feet prior to encroaching beyond an adjacent property's fence line.

Although sight distance to the south is less than the minimum recommended intersection sight distance, according to the AASHTO manual, stopping sight distance is considered the minimum requirement to ensure safe operation of an intersection. This is the distance that allows an oncoming driver to see a hazard on the roadway, react, and come to a complete stop if necessary to avoid a collision. Conversely, intersection sight distance is an operation measure intended to provide sufficient line of sight along the major-street so that a driver could turn from the minor-street approach without impeding traffic flow. Given that the measured intersection sight distance is greater than the minimum required stopping sight distance, the access is expected to operate safely, granted occasional delays may occur along the northbound approach of SW $124^{\text {th }}$ Avenue.

Based on the sight distance analysis, upon removal or proper maintenance of any obstructing onsite foliage, adequate sight distance can be made available at the proposed site access intersections to ensure safe operation along SW Myslony Street and SW $124^{\text {th }}$ Avenue. No other sight distance mitigation is necessary or recommended.

Operational Analysis

Intersection Capacity Analysis

A capacity and delay analysis were conducted for each of the study intersections per the signalized and unsignalized intersection analysis methodologies in the Highway Capacity Manual (HCM). Intersections are generally evaluated based on the average control delay experienced by vehicles and are assigned a grade according to their operation. The level of service (LOS) of an intersection can range from LOS A, which indicates very little or no delay experienced by vehicles, to LOS F, which indicates a high degree of congestion and delay. The volume-to-capacity (v / c) ratio is a measure that compares the traffic volumes (demand) against the available capacity of an intersection.

The City of Tualatin requires intersections operate at a minimum LOS E or better. For both LOS and delay related to the analysis of unsignalized intersections, the reported result applies to the worst minor-street approach lane.

As part of a 2018 Tualatin Bond Issue for the SW Myslony Street extension project, the intersection of SW Myslony Street at SW 124 ${ }^{\text {th }}$ Avenue was approved and currently planned for installation of a traffic signal. As such, the analysis of SW Myslony Street at SW 124th Avenue reflects intersection operation assuming both two-way stop-control and signal control for year 2020 analysis scenarios.

The v / c, delay, and LOS results of the capacity analysis are shown in Table 3 for the morning and evening peak hours. Detailed calculations as well as tables showing the relationship between delay and LOS are included in the appendix to this report.

[^2]Table 3: Intersection Capacity Analysis Summary

| | Morning Peak Hour | | Evening Peak Hour | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | LOS | Delay (s) | v/c | LOS | Delay (s) | v/c |
| SW Myslony Street at SW 124th Avenue | | | | | | |
| 2018 Existing Conditions | B | 14 | 0.11 | B | 13 | 0.16 |
| 2020 Background Conditions (TWSC) | C | 25 | 0.40 | E | 38 | 0.66 |
| 2020 Background Conditions (Signal) | B | 11 | - | B | 11 | - |
| 2020 Buildout Conditions (TWSC) | D | 26 | 0.43 | F | 54 | 0.78 |
| 2020 Buildout Conditions (Signal) | B | 11 | - | B | 11 | - |
| Site Access at SW Myslony Street | | | | | | |
| 2018 Existing Conditions | A | 8 | <0.01 | A | 9 | <0.01 |
| 2020 Background Conditions | B | 11 | 0.01 | B | 12 | 0.01 |
| 2020 Buildout Conditions | B | 11 | 0.01 | B | 13 | 0.08 |
| Site Access at SW 124th Avenue | | | | | | |
| 2020 Buildout Conditions | B | 11 | <0.01 | B | 10 | 0.01 |

Based on the results of the operational analysis, the intersection of SW Myslony Street at SW 124th Avenue, under two-way stop-control, is projected to operate at LOS F during the evening peak hour under year 2020 buildout conditions. However, upon installation of a planned traffic signal, the intersection is projected to operate at LOS B for all future year analysis scenarios. All other study intersections are currently operating acceptably per City of Tualatin standards and are projected to continue operating acceptably upon buildout of the proposed development through year 2020. No other operational mitigation is necessary or recommended.

Conclusions

No significant trends or crash patterns were identified at the intersection of SW Myslony Street at SW 124 ${ }^{\text {th }}$ Avenue that were indicative of safety concerns.

Upon removal or proper maintenance of any obstructing onsite foliage, adequate sight distance can be made available at the proposed site access intersections to ensure safe operation along SW Myslony Street and SW $124^{\text {th }}$ Avenue. No other sight distance mitigation is necessary or recommended.

The intersection of SW Myslony Street at SW 124 ${ }^{\text {th }}$ Avenue, under two-way stop-control, is projected to operate at LOS F during the evening peak hour under year 2020 buildout conditions. However, upon installation of a planned traffic signal, the intersection is projected to operate at LOS B for all future year analysis scenarios. All other study intersections are currently operating acceptably per City of Tualatin standards and are projected to continue operating acceptably upon buildout of the proposed development through year 2020. No other operational mitigation is necessary or recommended.

Appendix

N上ロて1

(303) 216-2439
www.alltrafficdata.net

Location: SW 124TH AVE \& SW MYSLONY RD AM
Date: Tuesday, July 10, 2018
Peak Hour: 07:30 AM - 08:30 AM
Peak 15-Minutes: 07:50 AM - 08:05 AM

Peak Hour

Note: Total study counts contained in parentheses.

	HV\%	PHF
EB	12.5%	0.58
WB	40.5%	0.68
NB	17.5%	0.81
SB	17.2%	0.82
All	19.0%	0.84

Traffic Counts - All Vehicles

Interval	SW MYSLONY RD Eastbound				SW MYSLONY RD Westbound				SW 124TH AVE Northbound				SW 124TH AVE Southbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
7:00 AM	0	0	0	1	0	2	0	0	0	2	5	6	0	7	17	4	44	518
7:05 AM	0	0	0	0	0	0	0	2	0	2	11	5	0	6	14	1	41	520
7:10 AM	0	2	0	2	0	1	2	0	0	2	13	5	0	5	11	2	45	532
7:15 AM	0	0	0	0	0	0	0	1	0	2	10	9	0	7	10	2	41	528
7:20 AM	0	1	1	0	0	1	0	0	0	0	7	1	0	2	13	4	30	531
7:25 AM	0	1	0	1	0	4	0	1	0	1	10	3	0	3	9	2	35	551
7:30 AM	0	1	0	1	0	2	0	1	0	1	11	4	0	4	14	3	42	557
7:35 AM	0	0	0	0	0	4	0	5	0	3	8	2	0	2	20	1	45	550
7:40 AM	0	1	0	1	0	1	0	0	0	2	10	1	0	1	14	2	33	544
7:45 AM	0	0	0	0	0	0	0	2	0	1	15	4	0	1	18	2	43	547
7:50 AM	0	0	0	0	0	2	1	3	0	2	11	4	0	3	29	3	58	552
7:55 AM	0	0	0	0	0	3	0	1	0	0	25	4	0	7	15	6	61	539
8:00 AM	0	1	0	0	0	2	0	1	0	0	16	4	0	4	15	3	46	511
8:05 AM	0	1	0	0	0	4	0	0	0	2	21	4	0	1	18	2	53	
8:10 AM	0	0	0	0	0	1	0	2	0	2	20	1	0	1	14	0	41	
8:15 AM	0	0	1	0	0	2	0	1	0	1	14	2	0	1	22	0	44	
8:20 AM	0	0	0	1	0	3	0	0	0	1	15	3	0	2	24	1	50	
8:25 AM	0	0	0	0	0	1	0	0	0	1	12	1	0	1	25	0	41	
8:30 AM	0	0	0	0	0	2	0	1	0	0	18	1	0	0	13	0	35	
8:35 AM	0	1	0	0	0	3	0	1	0	0	12	6	0	1	14	1	39	
8:40 AM	0	0	0	0	0	1	0	0	0	1	15	3	0	1	15	0	36	
8:45 AM	0	0	0	0	0	2	0	0	0	0	17	3	0	3	23	0	48	
8:50 AM	0	1	0	0	0	1	0	0	0	0	20	1	0	2	20	0	45	
8:55 AM	0	0	0	0	0	2	0	1	0	0	12	4	0	1	13	0	33	
Count Total	0	10	2	7	0	44	3	23	0	26	328	81	0	66	400	39	1,029	
Peak Hour	0	4	1	3	0	25	1	16	0	16	178	34	0	28	228	23	557	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval	Heavy Vehicles					Interval Start Time	Bicycles on Roadway					Interval Start Time	Pedestrians/Bicycles on Crosswalk				
Start Time	EB	NB	WB	SB	Total		EB	NB	WB	SB	Total		EB	NB	WB	SB	Total
7:00 AM	0	0	2	3	5	7:00 AM	0	0	0	0	0	7:00 AM	1	0	0	0	1
7:05 AM	0	3	0	2	5	7:05 AM	0	0	0	0	0	7:05 AM	0	0	1	0	1
7:10 AM	1	2	3	4	10	7:10 AM	0	0	0	0	0	7:10 AM	0	0	0	0	0
7:15 AM	0	4	0	1	5	7:15 AM	0	0	0	0	0	7:15 AM	10	1	1	1	13
7:20 AM	1	3	0	4	8	7:20 AM	0	0	0	0	0	7:20 AM	0	1	1	1	3
7:25 AM	1	2	2	1	6	7:25 AM	0	0	0	1	1	7:25 AM	10	0	0	1	11
7:30 AM	1	6	2	1	10	7:30 AM	0	0	0	0	0	7:30 AM	0	0	0	0	0
7:35 AM	0	0	3	5	8	7:35 AM	0	0	0	0	0	7:35 AM	1	0	0	0	1
7:40 AM	0	3	1	2	6	7:40 AM	0	0	0	0	0	7:40 AM	0	0	0	0	0
7:45 AM	0	3	1	3	7	7:45 AM	0	0	0	0	0	7:45 AM	0	0	0	0	0
7:50 AM	0	3	1	4	8	7:50 AM	0	0	0	0	0	7:50 AM	0	0	0	0	0
7:55 AM	0	4	1	7	12	7:55 AM	0	0	0	0	0	7:55 AM	0	0	0	0	0
8:00 AM	0	3	1	4	8	8:00 AM	0	0	0	0	0	8:00 AM	0	1	0	0	1
8:05 AM	0	7	4	2	13	8:05 AM	0	0	0	0	0	8:05 AM	0	0	0	0	0
8:10 AM	0	5	1	2	8	8:10 AM	0	0	0	0	0	8:10 AM	0	0	0	0	0
8:15 AM	0	1	0	6	7	8:15 AM	0	0	0	0	0	8:15 AM	0	0	0	1	1
8:20 AM	0	1	1	6	8	8:20 AM	0	0	0	0	0	8:20 AM	0	0	0	1	1
8:25 AM	0	4	1	6	11	8:25 AM	0	0	0	0	0	8:25 AM	0	0	0	1	1
8:30 AM	0	7	1	3	11	8:30 AM	0	0	0	0	0	8:30 AM	0	0	1	0	1
8:35 AM	0	10	1	3	14	8:35 AM	0	0	0	0	0	8:35 AM	0	0	0	0	0
8:40 AM	0	5	0	2	7	8:40 AM	0	0	0	0	0	8:40 AM	0	0	0	0	0
8:45 AM	0	3	1	6	10	8:45 AM	0	0	0	1	1	8:45 AM	0	0	0	0	0
8:50 AM	1	5	1	1	8	8:50 AM	0	0	0	0	0	8:50 AM	0	0	0	0	0
8:55 AM	0	3	2	4	9	8:55 AM	0	0	0	0	0	8:55 AM	0	0	1	0	1
Count Total	5	87	30	82	204	Count Total	0	0	0	2	2	Count Total	22	3	5	6	36
Peak Hour	1	40	17	48	106	Peak Hour	0	0	0	0	0	Peak Hour	1	1	0	3	5

(303) 216-2439
www.alltrafficdata.net

Location: SW 124TH AVE \& SW MYSLONY RD PM
Date: Tuesday, July 10, 2018
Peak Hour: 04:25 PM - 05:25 PM
Peak 15-Minutes: 04:30 PM - 04:45 PM

Peak Hour

Note: Total study counts contained in parentheses.

	HV\%	PHF
EB	0.0%	0.67
WB	6.5%	0.61
NB	5.7%	0.89
SB	3.2%	0.86
All	4.1%	0.89

Traffic Counts - All Vehicles

Interval	SW MYSLONY RD Eastbound				SW MYSLONY RD Westbound				SW 124TH AVE Northbound				SW 124TH AVE Southbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
4:00 PM	0	5	0	1	0	6	0	7	0	0	11	0	0	0	23	1	54	688
4:05 PM	0	1	0	2	0	13	0	1	0	0	16	0	0	0	34	0	67	679
4:10 PM	0	2	0	1	0	7	0	1	0	0	18	2	0	0	14	0	45	686
4:15 PM	0	1	0	1	0	5	0	2	1	0	13	0	0	1	29	0	53	710
4:20 PM	0	1	0	1	0	3	0	0	0	0	19	2	0	0	24	0	50	716
4:25 PM	0	0	0	1	0	8	0	0	0	0	13	1	0	1	29	1	54	729
4:30 PM	0	3	0	2	0	4	0	2	0	0	25	0	0	0	33	0	69	723
4:35 PM	0	3	0	2	0	4	0	3	0	0	18	2	0	3	44	0	79	705
4:40 PM	0	0	0	5	0	3	0	0	0	0	13	2	0	2	32	0	57	679
4:45 PM	0	2	0	1	0	1	0	3	0	0	12	0	0	0	37	0	56	657
4:50 PM	0	1	0	2	0	5	0	2	0	0	19	1	0	0	34	0	64	645
4:55 PM	0	1	0	1	0	4	0	2	0	0	11	0	0	0	21	0	40	621
5:00 PM	0	0	0	0	0	1	0	4	0	0	17	0	0	0	23	0	45	629
5:05 PM	0	1	0	1	0	7	0	5	0	0	19	2	0	0	39	0	74	
5:10 PM	0	2	0	3	0	6	0	2	0	0	17	2	0	0	37	0	69	
5:15 PM	0	2	1	0	0	5	0	2	0	0	18	1	0	0	30	0	59	
5:20 PM	0	1	0	0	0	4	0	0	0	0	16	1	0	0	41	0	63	
5:25 PM	0	0	0	0	0	1	0	3	0	0	14	1	0	1	28	0	48	
5:30 PM	0	3	1	1	0	2	0	1	0	0	15	1	0	1	26	0	51	
5:35 PM	0	1	0	1	0	3	0	3	0	0	17	1	0	0	27	0	53	
5:40 PM	0	1	0	0	0	2	0	2	0	0	7	0	0	2	21	0	35	
5:45 PM	0	0	0	0	0	1	0	2	0	1	13	0	0	4	23	0	44	
5:50 PM	0	0	0	0	0	4	0	3	0	0	8	0	0	0	25	0	40	
5:55 PM	0	1	0	1	0	4	0	2	0	0	11	0	0	0	29	0	48	
Count Total	0	32	2	27	0	103	0	52	1	1	360	19	0	15	703	2	1,317	
Peak Hour	0	16	1	18	0	52	0	25	0	0	198	12	0	6	400	1	729	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval	Heavy Vehicles					Interval Start Time	Bicycles on Roadway					Interval Start Time	Pedestrians/Bicycles on Crosswalk				
Start Time	EB	NB	WB	SB	Total		EB	NB	WB	SB	Total		EB	NB	WB	SB	Total
4:00 PM	0	1	0	1	2	4:00 PM	0	0	0	0	0	4:00 PM	0	1	0	0	1
4:05 PM	0	1	1	2	4	4:05 PM	0	0	0	0	0	4:05 PM	0	0	0	0	0
4:10 PM	0	1	0	1	2	4:10 PM	0	0	0	0	0	4:10 PM	0	0	0	0	0
4:15 PM	0	1	2	0	3	4:15 PM	0	0	0	0	0	4:15 PM	0	0	0	0	0
4:20 PM	0	1	0	0	1	4:20 PM	0	0	0	0	0	4:20 PM	0	0	0	0	0
4:25 PM	0	1	2	1	4	4:25 PM	0	0	0	0	0	4:25 PM	0	0	0	0	0
4:30 PM	0	0	0	1	1	4:30 PM	0	0	0	0	0	4:30 PM	0	0	0	0	0
4:35 PM	0	2	1	3	6	4:35 PM	0	0	0	0	0	4:35 PM	0	0	0	0	0
4:40 PM	0	1	0	2	3	4:40 PM	0	1	0	0	1	4:40 PM	0	1	0	0	1
4:45 PM	0	1	1	0	2	4:45 PM	0	0	0	0	0	4:45 PM	0	0	0	0	0
4:50 PM	0	1	0	1	2	4:50 PM	0	0	0	0	0	4:50 PM	1	1	0	0	2
4:55 PM	0	1	0	0	1	4:55 PM	0	0	0	0	0	4:55 PM	0	0	0	0	0
5:00 PM	0	1	0	0	1	5:00 PM	0	0	0	0	0	5:00 PM	0	0	0	1	1
5:05 PM	0	0	0	1	1	5:05 PM	0	0	1	0	1	5:05 PM	0	0	0	0	0
5:10 PM	0	1	0	2	3	5:10 PM	0	0	1	0	1	5:10 PM	0	0	0	0	0
5:15 PM	0	0	1	0	1	5:15 PM	0	0	0	0	0	5:15 PM	0	0	0	0	0
5:20 PM	0	3	0	2	5	5:20 PM	0	0	1	0	1	5:20 PM	0	0	0	0	0
5:25 PM	0	1	0	1	2	5:25 PM	0	0	0	0	0	5:25 PM	0	0	0	0	0
5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0	5:30 PM	0	0	0	0	0
5:35 PM	0	1	2	3	6	5:35 PM	0	0	0	0	0	5:35 PM	0	0	0	0	0
5:40 PM	0	0	0	1	1	5:40 PM	0	0	0	0	0	5:40 PM	0	0	0	0	0
5:45 PM	0	0	0	3	3	5:45 PM	0	0	0	0	0	5:45 PM	0	0	0	0	0
5:50 PM	0	0	2	1	3	5:50 PM	0	0	0	0	0	5:50 PM	0	0	0	0	0
5:55 PM	0	0	1	1	2	5:55 PM	0	0	0	0	0	5:55 PM	0	0	0	0	0
Count Total	0	19	13	27	59	Count Total	0	1	3	0	4	Count Total	1	3	0	1	5
Peak Hour	0	12	5	13	30	Peak Hour	0	1	3	0	4	Peak Hour	1	2	0	1	4

TRIP GENERATION CALCULATIONS

Land Use: General Light Industrial
Land Use Code: 110
Setting/Location General Urban/Suburban
Variable: 1,000 Square Feet of Gross Floor Area
Variable Quantity: 52.5

AM PEAK HOUR

Trip Rate: 0.70

	Enter	Exit	Total
Directional Distribution	88%	12%	
Trip Ends	$\mathbf{3 3}$	$\mathbf{4}$	$\mathbf{3 7}$

WEEKDAY
Trip Rate: 4.96

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 3 0}$	$\mathbf{1 3 0}$	$\mathbf{2 6 0}$

PM PEAK HOUR

Trip Rate: 0.63

	Enter	Exit	Total
Directional Distribution	13%	87%	
Trip Ends	$\mathbf{4}$	$\mathbf{2 9}$	$\mathbf{3 3}$

SATURDAY

Trip Rate: 1.99

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{5 2}$	$\mathbf{5 2}$	$\mathbf{1 0 4}$

LEVEL OF SERVICE

Level of service is used to describe the quality of traffic flow. Levels of service A to C are considered good, and rural roads are usually designed for level of service C . Urban streets and signalized intersections are typically designed for level of service D. Level of service E is considered to be the limit of acceptable delay. For unsignalized intersections, level of service E is generally considered acceptable. Here is a more complete description of levels of service:

Level of service A: Very low delay at intersections, with all traffic signal cycles clearing and no vehicles waiting through more than one signal cycle. On highways, low volume and high speeds, with speeds not restricted by other vehicles.

Level of service B: Operating speeds beginning to be affected by other traffic; short traffic delays at intersections. Higher average intersection delay than for level of service A resulting from more vehicles stopping.

Level of service C: Operating speeds and maneuverability closely controlled by other traffic; higher delays at intersections than for level of service B due to a significant number of vehicles stopping. Not all signal cycles clear the waiting vehicles. This is the recommended design standard for rural highways.

Level of service D: Tolerable operating speeds; long traffic delays occur at intersections. The influence of congestion is noticeable. At traffic signals many vehicles stop, and the proportion of vehicles not stopping declines. The number of signal cycle failures, for which vehicles must wait through more than one signal cycle, are noticeable. This is typically the design level for urban signalized intersections.

Level of service E: Restricted speeds, very long traffic delays at traffic signals, and traffic volumes near capacity. Flow is unstable so that any interruption, no matter how minor, will cause queues to form and service to deteriorate to level of service F. Traffic signal cycle failures are frequent occurrences. For unsignalized intersections, level of service E or better is generally considered acceptable.

Level of service F: Extreme delays, resulting in long queues which may interfere with other traffic movements. There may be stoppages of long duration, and speeds may drop to zero. There may be frequent signal cycle failures. Level of service F will typically result when vehicle arrival rates are greater than capacity. It is considered unacceptable by most drivers.

LEVEL OF SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-20$
C	$20-35$
D	$35-55$
E	$55-80$
F	>80

LEVEL OF SERVICE CRITERIA

FOR UNSIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-15$
C	$15-25$
D	$25-35$
E	$35-50$
F	>50

Intersection												
Int Delay, s/veh	1.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow		${ }^{7}$	中 ${ }^{\text {c }}$		${ }^{7}$	中 ${ }^{\text {a }}$	
Traffic Vol, veh/h	4	1	3	25	1	16	16	178	34	28	228	23
Future Vol, veh/h	4	1	3	25	1	16	16	178	34	28	228	23
Conflicting Peds, \#/hr	3	0	1	1	0	3	1	0	0	0	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	100	-	-	100	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84
Heavy Vehicles, \%	13	13	13	41	41	41	18	18	18	17	17	17
Mvmt Flow	5	1	4	30	1	19	19	212	40	33	271	27

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			-1	M	
Traffic Vol, veh/h	63	1	1	42	1	1
Future Vol, veh/h	63	1	1	42	1	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	68	68	68	68	68	68
Heavy Vehicles, \%	11	11	41	41	40	40
Mvmt Flow	93	1	1	62	1	1

Intersection												
Int Delay, s/veh	2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*		${ }^{1}$	中 ${ }^{\text {c }}$		${ }_{1}$	中 ${ }^{\text {a }}$	
Traffic Vol, veh/h	16	1	18	50	1	24	1	198	11	6	400	1
Future Vol, veh/h	16	1	18	50	1	24	1	198	11	6	400	1
Conflicting Peds, \#/hr	1	0	2	2	0	1	1	0	0	0	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	100	-	-	100	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, \%	0	0	0	7	7	7	6	6	6	3	3	3
Mvmt Flow	18	1	20	56	1	27	1	222	12	7	449	1

Intersection												
Int Delay, s/veh	3.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow		${ }^{7}$	中 ${ }^{\text {c }}$		${ }^{7}$	中 ${ }^{\text {a }}$	
Traffic Vol, veh/h	4	1	3	26	1	100	17	336	35	89	451	24
Future Vol, veh/h	4	1	3	26	1	100	17	336	35	89	451	24
Conflicting Peds, \#/hr	3	0	1	1	0	3	1	0	0	0	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	100	-	-	100	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84
Heavy Vehicles, \%	13	13	13	41	41	41	18	18	18	17	17	17
Mvmt Flow	5	1	4	31	1	119	20	400	42	106	537	29

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			-1	M	
Traffic Vol, veh/h	125	1	1	127	1	1
Future Vol, veh/h	125	1	1	127	1	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	68	68	68	68	68	68
Heavy Vehicles, \%	11	11	41	41	40	40
Mvmt Flow	184	1	1	187	1	1

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	185	0	374	185
Stage 1	-	-	-	-	185	-
Stage 2	-	-	-	-	189	-
Critical Hdwy	-	-	4.51	-	6.8	6.6
Critical Hdwy Stg 1	-	-	-	-	5.8	-
Critical Hdwy Stg 2	-	-	-	-	5.8	-
Follow-up Hdwy	-	-	2.569	-	3.86	3.66
Pot Cap-1 Maneuver	-	-	1186	-	559	769
Stage 1	-	-	-	-	763	-
Stage 2	-	-	-	-	760	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1186	-	558	769
Mov Cap-2 Maneuver	-	-	-	-	558	-
Stage 1	-	-	-	-	762	-
Stage 2	-	-	-	-	760	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		10.6	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL WBT	
Capacity (veh/h)		647	-	-	1186	-
HCM Lane V/C Ratio		0.005	-	-	0.001	-
HCM Control Delay (s)		10.6	-	-	8	0
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0	-	-	0	-

Intersection						

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	304	0	587	303
Stage 1	-	-	-	-	303	-
Stage 2	-	-	-	-	284	-
Critical Hdwy	-	-	4.17	-	6.8	6.6
Critical Hdwy Stg 1	-	-	-	-	5.8	-
Critical Hdwy Stg 2	-	-	-	-	5.8	-
Follow-up Hdwy	-	-	2.263	-	3.86	3.66
Pot Cap-1 Maneuver	-	-	1229	-	415	656
Stage 1	-	-	-	-	670	-
Stage 2	-	-	-	-	685	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1229	-	414	656
Mov Cap-2 Maneuver	-	-	-	-	414	-
Stage 1	-	-	-	-	669	-
Stage 2	-	-	-	-	685	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		12.1	
HCM LOS					B	
HCMLOS						
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		508	-	-	1229	-
HCM Lane V/C Ratio		0.006	-	-	0.001	-
HCM Control Delay (s)		12.1	-	-	7.9	0
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0	-	-	0	-

	4			\checkmark				\dagger	p		\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\ddagger			*		${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{*}$	㻢	
Traffic Volume (veh/h)	17	1	19	52	1	119	1	395	11	172	530	1
Future Volume (veh/h)	17	1	19	52	1	119	1	395	11	172	530	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		0.98	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1796	1796	1796	1811	1811	1811	1856	1856	1856
Adj Flow Rate, veh/h	19	1	21	58	1	134	1	444	12	193	596	1
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, \%	0	0	0	7	7	7	6	6	6	3	3	3
Cap, veh/h	263	58	163	211	23	196	5	820	22	253	1378	2
Arrive On Green	0.19	0.19	0.19	0.19	0.19	0.19	0.00	0.24	0.24	0.14	0.38	0.38
Sat Flow, veh/h	509	301	851	330	121	1023	1725	3420	92	1767	3611	6
Grp Volume(v), veh/h	41	0	0	193	0	0	1	223	233	193	291	306
Grp Sat Flow(s),veh/h/ln	1661	0	0	1474	0	0	1725	1721	1792	1767	1763	1854
Q Serve(g_s), s	0.0	0.0	0.0	2.4	0.0	0.0	0.0	3.6	3.6	3.3	3.9	3.9
Cycle Q Clear(g_c), s	0.6	0.0	0.0	3.8	0.0	0.0	0.0	3.6	3.6	3.3	3.9	3.9
Prop In Lane	0.46		0.51	0.30		0.69	1.00		0.05	1.00		0.00
Lane Grp Cap(c), veh/h	484	0	0	430	0	0	5	413	430	253	673	707
V/C Ratio(X)	0.08	0.00	0.00	0.45	0.00	0.00	0.18	0.54	0.54	0.76	0.43	0.43
Avail Cap(c_a), veh/h	1025	0	0	973	0	0	272	977	1018	585	1307	1375
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	10.6	0.0	0.0	11.9	0.0	0.0	15.8	10.5	10.5	13.1	7.3	7.3
Incr Delay (d2), s/veh	0.1	0.0	0.0	0.7	0.0	0.0	15.4	1.1	1.1	4.8	0.4	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.2	0.0	0.0	1.1	0.0	0.0	0.0	0.9	1.0	1.2	0.7	0.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	10.7	0.0	0.0	12.6	0.0	0.0	31.2	11.6	11.6	17.8	7.7	7.7
LnGrp LOS	B	A	A	B	A	A	C	B	B	B	A	A
Approach Vol, veh/h		41			193			457			790	
Approach Delay, s/veh		10.7			12.6			11.7			10.2	
Approach LOS		B			B			B			B	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	9.0	12.1		10.6	4.5	16.6		10.6				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	10.5	18.0		18.0	5.0	23.5		18.0				
Max Q Clear Time (g_c+l1), s	5.3	5.6		2.6	2.0	5.9		5.8				
Green Ext Time (p_c), s	0.2	1.9		0.1	0.0	3.0		0.9				
Intersection Summary												
HCM 6th Ctrl Delay			11.0									
HCM 6th LOS			B									

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow		${ }^{7}$	中 ${ }^{\text {c }}$		${ }^{*}$	中 ${ }^{\text {a }}$	
Traffic Vol, veh/h	4	1	3	28	1	101	17	337	37	102	451	24
Future Vol, veh/h	4	1	3	28	1	101	17	337	37	102	451	24
Conflicting Peds, \#/hr	3	0	1	1	0	3	1	0	0	0	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	100	-	-	100	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84
Heavy Vehicles, \%	13	13	13	41	41	41	18	18	18	17	17	17
Mvmt Flow	5	1	4	33	1	120	20	401	44	121	537	29

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		$\mathbf{7}$	个t			4中
Traffic Vol, veh/h	0	1	390	11	0	482
Future Vol, veh/h	0	1	390	11	0	482
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, \%	40	40	18	18	23	23
Mvmt Flow	0	1	481	14	0	595

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		$\mathbf{7}$	个			
Th						
Traffic Vol, veh/h	0	6	406	2	0	612
Future Vol, veh/h	0	6	406	2	0	612
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	40	40	6	6	3	3
Mvmt Flow	0	7	456	2	0	688

	4	\rightarrow		7		4	4	4	7	\pm	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\ddagger			\ddagger		${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{7}$	中 ${ }^{\text {c }}$	
Traffic Volume (veh/h)	4	1	3	28	1	101	17	337	37	102	451	24
Future Volume (veh/h)	4	1	3	28	1	101	17	337	37	102	451	24
Initial Q $(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1707	1707	1707	1292	1292	1292	1633	1633	1633	1648	1648	1648
Adj Flow Rate, veh/h	5	1	4	33	1	120	20	401	44	121	537	29
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, \%	13	13	13	41	41	41	18	18	18	17	17	17
Cap, veh/h	276	73	111	176	14	150	40	729	80	167	1025	55
Arrive On Green	0.18	0.18	0.18	0.18	0.18	0.18	0.03	0.26	0.26	0.11	0.34	0.34
Sat Flow, veh/h	523	408	621	158	81	844	1555	2821	308	1570	3021	163
Grp Volume(v), veh/h	10	0	0	154	0	0	20	220	225	121	278	288
Grp Sat Flow(s),veh/h/ln	1552	0	0	1083	0	0	1555	1552	1577	1570	1566	1618
Q Serve(g_s), s	0.0	0.0	0.0	2.4	0.0	0.0	0.4	3.6	3.7	2.2	4.2	4.2
Cycle Q Clear(g_c), s	0.2	0.0	0.0	4.0	0.0	0.0	0.4	3.6	3.7	2.2	4.2	4.2
Prop In Lane	0.50		0.40	0.21		0.78	1.00		0.20	1.00		0.10
Lane Grp Cap(c), veh/h	459	0	0	341	0	0	40	401	408	167	531	549
V/C Ratio(X)	0.02	0.00	0.00	0.45	0.00	0.00	0.50	0.55	0.55	0.72	0.52	0.52
Avail Cap(c_a), veh/h	1020	0	0	799	0	0	263	945	961	558	1245	1287
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	10.0	0.0	0.0	11.6	0.0	0.0	14.2	9.5	9.5	12.8	7.8	7.8
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.9	0.0	0.0	9.4	1.2	1.2	5.8	0.8	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.0	0.0	0.0	0.8	0.0	0.0	0.2	0.8	0.8	0.8	0.7	0.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	10.1	0.0	0.0	12.5	0.0	0.0	23.6	10.6	10.7	18.6	8.6	8.6
LnGrp LOS	B	A	A	B	A	A	C	B	B	B	A	A
Approach Vol, veh/h		10			154			465			687	
Approach Delay, s/veh		10.1			12.5			11.2			10.4	
Approach LOS		B			B			B			B	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s	7.6	12.1		9.8	5.3	14.5		9.8				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	10.5	18.0		18.0	5.0	23.5		18.0				
Max Q Clear Time (g_c+11), s	4.2	5.7		2.2	2.4	6.2		6.0				
Green Ext Time (p_c), s	0.1	1.9		0.0	0.0	2.9		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			10.9									
HCM 6th LOS			B									

	4	\rightarrow		7		4	4	4	7	*	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\ddagger			\ddagger		${ }^{1}$	* ${ }^{\text {a }}$		${ }^{7}$	中 ${ }^{\text {P }}$	
Traffic Volume (veh/h)	17	1	19	63	1	124	1	401	11	174	530	1
Future Volume (veh/h)	17	1	19	63	1	124	1	401	11	174	530	1
Initial Q $(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		0.98	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1796	1796	1796	1811	1811	1811	1856	1856	1856
Adj Flow Rate, veh/h	19	1	21	71	1	139	1	451	12	196	596	1
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, \%	0	0	0	7	7	7	6	6	6	3	3	3
Cap, veh/h	269	58	176	224	26	199	5	815	22	256	1379	2
Arrive On Green	0.21	0.21	0.21	0.21	0.21	0.21	0.00	0.24	0.24	0.15	0.38	0.38
Sat Flow, veh/h	530	283	854	375	126	968	1725	3422	91	1767	3611	6
Grp Volume(v), veh/h	41	0	0	211	0	0	1	226	237	196	291	306
Grp Sat Flow(s),veh/h/ln	1667	0	0	1470	0	0	1725	1721	1792	1767	1763	1854
Q Serve(g_s), s	0.0	0.0	0.0	2.8	0.0	0.0	0.0	3.8	3.8	3.5	4.0	4.0
Cycle Q Clear(g_c), s	0.6	0.0	0.0	4.3	0.0	0.0	0.0	3.8	3.8	3.5	4.0	4.0
Prop In Lane	0.46		0.51	0.34		0.66	1.00		0.05	1.00		0.00
Lane Grp Cap(c), veh/h	503	0	0	449	0	0	5	410	427	256	673	708
V/C Ratio(X)	0.08	0.00	0.00	0.47	0.00	0.00	0.19	0.55	0.55	0.76	0.43	0.43
Avail Cap(c_a), veh/h	994	0	0	940	0	0	263	943	982	565	1261	1327
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	10.6	0.0	0.0	12.0	0.0	0.0	16.4	11.0	11.0	13.5	7.5	7.5
Incr Delay (d2), s/veh	0.1	0.0	0.0	0.8	0.0	0.0	16.7	1.2	1.1	4.7	0.4	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.2	0.0	0.0	1.2	0.0	0.0	0.0	1.0	1.1	1.3	0.8	0.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	10.7	0.0	0.0	12.8	0.0	0.0	33.0	12.1	12.1	18.2	8.0	7.9
LnGrp LOS	B	A	A	B	A	A	C	B	B	B	A	A
Approach Vol, veh/h		41			211			464			793	
Approach Delay, s/veh		10.7			12.8			12.2			10.5	
Approach LOS		B			B			B			B	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s	9.3	12.3		11.3	4.5	17.0		11.3				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	10.5	18.0		18.0	5.0	23.5		18.0				
Max Q Clear Time (g_ct11), s	5.5	5.8		2.6	2.0	6.0		6.3				
Green Ext Time (p_c), s	0.2	1.9		0.1	0.0	3.0		1.0				
Intersection Summary												
HCM 6th Ctrl Delay			11.3									
HCM 6th LOS			B									

Technical Memorandum

To: Skip Stanaway
Four-S Corp
From: Daniel Stumpf, EI
Todd Mobley, PE
Date: July 17, 2018
Subject: 19000 SW $124^{\text {th }}$ Avenue Drake Property - Access Feasibility Study

LANCASTER engineering

321 SW 4th Ave., Suite 400 Portland, OR 97204 phone: 503.248.0313 fax: 503.248.9251
lancasterengineering.com

Introduction

This memorandum reports the findings of an operational analysis conducted for a future unsignalized, fullmovement access along SW 124 Avenue from the Drake property, located just south of 12200 SW Myslony Avenue in Tualatin, Oregon.

At the request of City of Tualatin staff, in order to allow access on $S W 124^{\text {th }}$ Avenue without requiring a future north/south connection onto SW Myslony Street, an analysis of operation for a future access onto SW $124^{\text {th }}$ Avenue is necessary. In addition, the access intersection must operate safely whereby minimum sight distance standards must be met.

The purpose of this memorandum is to examine a worst-case development scenario with regard to projected trip generation of the property and determine the breakpoint of intersection operation of the future property access onto SW 124th Avenue, assuming the completion of the SW 124th Avenue extension south of SW Tualatin Sherwood Road.

Property Description \& Vicinity Roadways

The property' is located north of SW Cimino Street, south of SW' Myslony Street, and east of SW 1244 Avenue in Tualatin, Oregon. The property (tax lot 100) encompasses an approximate total of 9.3 acres with a significant portion of the lot being wetlands. The property is currently undeveloped; however approved access onto SW 124th Avenue is provided along the southern property line.

SW 124th Avenue is classified by the City of Tualatin as a Major Arterial. The roadway generally has a fivelane cross-section, with two travel lanes in each direction and a center raised median/two-way left-turn lane, and has a posted speed of 45 mph . Curbs, sidewalks, and bicycle lanes are provided along both sides of the roadway.

Figure 1 presents an aerial image of the nearby vicinity with the property outlined in yellow.

Figure 1: Aerial Photo of Site Vicinity (Image from Google Earth)

Operational Analysis

To evaluate the breakpoint at which the future site access intersection onto SW 124 ${ }^{\text {th }}$ Avenue exceeds City of Tualatin's minimum standards of acceptable operation, an analysis of potential site trip generation, future traffic volumes, and intersection operation was conducted. The following sections describe these analysis methodologies and results.

Trip Generation

To assess operation at the future access along SW 124 ${ }^{\text {th }}$ Avenue, a projection of trip generation for the Drake property is necessary. Since no development is currently proposed, at the request of City of Tualatin staff a worst-case development scenario was analyzed to ensure the access is projected to operate at acceptable levels of capacity per City standards.

To estimate trip generation for the site, trip rates from the Trip Generation Manual were used. Based on the property's zoning as General Manufacturing (MG) and at the direction of City staff, data from land-use code 110, General Light Industrial, was used to estimate trip generation based on the square-footage of building gross floor area.

While determining a worst-case development size is dependent on operation at the future access intersection, a reasonable worst-case development scenario may still be defined based on the size of the site and the developable area within the property. To determine a reasonable development size, the following assumptions were made:

- Approximately $2 / 3$ of the property is wetlands and therefore is undevelopable. This leaves approximately 135,036 square feet of developable space.
- Assuming an industrial building footprint covers roughly 30 percent of the developable area, a building of approximately 40,500 square feet may be constructed. The remaining 70 percent of the developable area is assumed as space necessary to accommodate parking lots, street right-of-way improvements, other public space, etc.

Per these assumptions, the trip generation calculations show that the property could generate up to 28 morning peak hour, 26 evening peak hour, and 200 average weekday site trips. The trip generation estimates are summarized in Error! Reference source not found.. Detailed trip generation calculations are included as an attachment to this study.

Table 1 - Trip Generation Summary

| | | | | Morning Peak Hour | | Evening Peak Hour | | Weekday | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ITE Code | Size / Rate | | | | | | | |
| | | | Enter | Exit | Total | Enter | Exit | Total | Total |
| General Light Industrial | 110 | 40,500 sq.ft. | 25 | 3 | 28 | 3 | 23 | 26 | 200 |

[^3]
Trip Distribution

The directional distribution of site trips to/from the project site was estimated based on the locations of likely trip destinations and locations of major transportation facilities within the site vicinity. The following trip distribution was estimated and used for analysis:

- Approximately 60 percent of site trips will travel to/from the south along SW $124^{\text {th }}$ Avenue; and
- Approximately 40 percent of site trips will travel to / from the north along SW $124^{\text {th }}$ Avenue.

The trip distribution and assignment for the trips generated by the reasonable worst-case development during the morning and evening peak hours is shown in Figure 2 on page 5.

Future Traffic Volumes

2029 Background Volumes

To provide an analysis of the site access intersection, an estimate of future traffic volumes along SW 124th Avenue is required. Year 2019 buildout traffic volumes (with the SW $124^{\text {th }}$ Avenue extension) from the prior approved IPT Tualatin Transportation Impact Study, dated July 18th, 2017, was used. Volumes specific to the intersection of SW Cimino Street at SW Tualatin, traveling to/from the north, were used and grown at a rate of two percent per year over a 10-year period to reflect year 2029 background traffic conditions.

Note that the prior approved TIS volumes did not account for the proposed extension of SW Myslony Street. However, since the proposed extension is expected to reroute some traffic away from the intersection of SW Tualatin Sherwood Road at SW 124 th Avenue (i.e. decrease eastbound right-turning and southbound leftturning vehicles at the intersection), analyzing the future access intersection without the reroute will provide a more conservative assessment of intersection operation.

2029 Buildout Volumes

Peak hour trips calculated to be generated under the reasonable worst-case development scenario of the property, as described earlier within the Site Trips section, were added to the projected year 2029 background traffic volumes to obtain the potential 2029 buildout volumes.

Figure 2 on page 5 shows the projected year 2029 background and buildout traffic volumes at the future access intersection during the morning and evening peak hours.

Capacity Analysis

To determine a worst-case development scenario for the site, a capacity and delay analysis was conducted at the future access intersection at SW 124th Avenue. The operational analysis was conducted per the unsignalized intersection analysis methodologies in the Higbway Capacity Manual (HCM).

Intersections are generally evaluated based on the average control delay experienced by vehicles and are assigned a grade according to their operation. The level of service (LOS) of an intersection can range from LOS A, which indicates very little or no delay experienced by vehicles, to LOS F, which indicates a high degree of congestion and delay. The volume-to-capacity (v / c) ratio is a measure that compares the traffic volumes (demand) against the available capacity of an intersection. The City of Tualatin standards require unsignalized intersections operate at a minimum LOS E or better.

In conducting the operational analysis, the following assumptions and scenarios were analyzed:

- All analysis scenarios include the installation of a dedicated southbound left-turn lane.
- It is assumed that approximately 40 percent of outbound traffic utilizing the future access would consist of heavy vehicles.
- The intersection was analysed with and without the installation of a two-way left-turn receiving lane.

The v/c, delay, and LOS results of the capacity analysis, assuming both reasonable worst-case and worst-case development scenarios, are shown in Table 2 for the morning and evening peak hours. Detailed calculations as well as tables showing the relationship between delay and LOS are included as an attachment to this memorandum.

[^4]July 17, 2018
Page 7 of 10

Table 2: Intersection Capacity Analysis Summary

| | Morning Peak Hour | | | Evening Peak Hour | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | LOS | Delay (s) | v/c | LOS | Delay (s) | v/c |
| 2020 Buildout Conditions (full-movement w/o TWLTL) | | | | | | |
| Reasonable Worst-Case Development (40,500 sq.ft.) | B | 13 | 0.01 | C | 15 | 0.07 |
| Worst-Case Development (491,000 sq.ft.) | C | 20 | 0.16 | E | 50 | 0.84 |
| 2020 Buildout Conditions (full-movement w/ TWLTL) | | | | | | |
| Reasonable Worst-Case Development (40,500 sq.ft.) | B | 11 | 0.01 | B | 12 | 0.05 |
| Worst-Case Development (737,000 sq.ft.) | C | 21 | 0.23 | E | 50 | 0.91 |

Based on the results of the operational analysis, a future full-movement access intersection is possible along SW 124th Avenue while meeting City of Tualatin operation standards. Although unreasonably large to construct given the limitations of developable land within the site, a 491,000 square foot general light industrial building could be constructed before the future access intersection exceeds LOS E. If a two-way left-turn receiving lane is also installed, the access could serve a development of up to 737,000 square feet.

Volumes associated with the worst-case development scenario, with and without a two-way left-turn lane, are shown in Figure 3 on page 8.

Sight Distance Analysis

To assess adequacy of sight distances at potential access locations along SW $124^{4 h}$ Avenue, intersection sight distance was measured at locations near the northern and southern property lines of the site. Sight distance was measured and evaluated in accordance with standards established in A Policy on Geometric Design of Highways and Streets ${ }^{3}$. According to AASHTO, the driver's eye is assumed to be 15 feet from the near edge of the nearest travel lane of the intersecting street and at a height of 3.5 feet above the minor-street approach pavement. The vehicle driver's eye-height along the major-street approach is assumed to be 3.5 feet above the cross-street pavement.

Based on a posted speed of 45 mph along SW $124^{\text {th }}$ Avenue, the calculated intersection sight distance for leftturning vehicles crossing two northbound travel lanes (assuming the raised median is replaced by a southbound receiving lane) is 530 feet to the north and south.

Assuming removal or proper maintenance of any obstructing/overgrown roadside foliage, inclusive of foliage within the median along SW 124th Avenue, intersection sight distance near the northern property line was measured to be in excess of 600 feet to the north and 392 feet to the south, limited by an onsite fence and onsite foliage. Intersection sight distance near the southern property line, also assuming removal or proper maintenance of any obstructing/overgrown roadside foliage, was measured to be in 533 feet to the north and in excess of 600 feet to the south. At the southern property line, sight distances viewing north were limited by overgrown foliage within the median and along the side of the road; however, because of significant vegetative growth, an exact measurement to the extents of sight distance without this obstructing foliage couldn't be determined.

Based on the sight distance analysis, upon removal or proper maintenance of any obstructing roadside or median foliage along SW $124^{\text {th }}$ Avenue, adequate sight distance can be made available at a future access located near the southern edge of the site. If onsite foliage and the fence line are adjusted, sight distances near the northern property line may be improved upon; however, are not expected to meet the minimum recommended intersection sight distance standards to the south without having sight lines encroach on the adjacent property to the south. Accordingly, the preferred location to construct a full-movement site access would be located near the southern edge of the site.

[^5]July 17, 2018
Page 10 of 10

Conclusions

Based on the operational analysis through year 2029, full-movement access onto SW $124^{\text {th }}$ Avenue from the Drake property is possible and may accommodate a 491,000 square foot industrial building (737,000 square foot industrial building if a two-way left-turn receiving lane is provided). No restrictions to the access are necessary or recommended.

Based on the sight distance analysis, upon removal or proper maintenance of any obstructing roadside or median foliage along SW 124 th Avenue, adequate sight distance can be made available at a future access located near the southern edge of the site. In addition, construction of a full-movement access near the southern property line is preferred with regard to meeting the minimum recommended intersection sight distance standards.

If you have any questions regarding this technical memorandum, please don't hesitate to contact us.

TRIP GENERATION CALCULATIONS Reasonable Worst-Case Development Scenario

Land Use: General Light Industrial
Land Use Code: 110
Setting/Location General Urban/Suburban
Variable: 1,000 Square Feet of Gross Floor Area

Variable Quantity: 40.5

AM PEAK HOUR

Trip Rate: 0.70

	Enter	Exit	Total
Directional Distribution	88%	12%	
Trip Ends	$\mathbf{2 5}$	$\mathbf{3}$	$\mathbf{2 8}$

WEEKDAY
Trip Rate: 4.96

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$

PM PEAK HOUR

Trip Rate: 0.63

	Enter	Exit	Total
Directional Distribution	13%	87%	
Trip Ends	$\mathbf{3}$	$\mathbf{2 3}$	$\mathbf{2 6}$

SATURDAY
Trip Rate: 1.99

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{4 0}$	$\mathbf{4 0}$	$\mathbf{8 0}$

TRIP GENERATION CALCULATIONS Worst-Case Development Scenario (No TWLTL)

Land Use: General Light Industrial
Land Use Code: 110
Setting/Location General Urban/Suburban
Variable: 1,000 Square Feet of Gross Floor Area

Variable Quantity: 491

AM PEAK HOUR

Trip Rate: 0.70

	Enter	Exit	Total
Directional Distribution	88%	12%	
Trip Ends	$\mathbf{3 0 3}$	$\mathbf{4 1}$	$\mathbf{3 4 4}$

WEEKDAY
Trip Rate: 4.96

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 , 2 1 8}$	$\mathbf{1 , 2 1 8}$	$\mathbf{2 , 4 3 6}$

PM PEAK HOUR

Trip Rate: 0.63

	Enter	Exit	Total
Directional Distribution	13%	87%	
Trip Ends	$\mathbf{4 0}$	$\mathbf{2 6 9}$	$\mathbf{3 0 9}$

SATURDAY

Trip Rate: 1.99

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{4 8 9}$	$\mathbf{4 8 9}$	$\mathbf{9 7 8}$

TRIP GENERATION CALCULATIONS Worst-Case Development Scenario (with TWLTL)

Land Use: General Light Industrial
Land Use Code: 110
Setting/Location General Urban/Suburban
Variable: 1,000 Square Feet of Gross Floor Area
Variable Quantity: 737

AM PEAK HOUR

Trip Rate: 0.70

	Enter	Exit	Total
Directional Distribution	88%	12%	
Trip Ends	$\mathbf{4 5 4}$	$\mathbf{6 2}$	$\mathbf{5 1 6}$

WEEKDAY
Trip Rate: 4.96

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 , 8 2 8}$	$\mathbf{1 , 8 2 8}$	$\mathbf{3 , 6 5 6}$

PM PEAK HOUR

Trip Rate: 0.63

	Enter	Exit	Total
Directional Distribution	13%	87%	
Trip Ends	$\mathbf{6 0}$	$\mathbf{4 0 4}$	$\mathbf{4 6 4}$

SATURDAY
Trip Rate: 1.99

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{7 3 3}$	$\mathbf{7 3 3}$	$\mathbf{1 , 4 6 6}$

LEVEL OF SERVICE

Level of service is used to describe the quality of traffic flow. Levels of service A to C are considered good, and rural roads are usually designed for level of service C . Urban streets and signalized intersections are typically designed for level of service D. Level of service E is considered to be the limit of acceptable delay. For unsignalized intersections, level of service E is generally considered acceptable. Here is a more complete description of levels of service:

Level of service A: Very low delay at intersections, with all traffic signal cycles clearing and no vehicles waiting through more than one signal cycle. On highways, low volume and high speeds, with speeds not restricted by other vehicles.

Level of service B: Operating speeds beginning to be affected by other traffic; short traffic delays at intersections. Higher average intersection delay than for level of service A resulting from more vehicles stopping.

Level of service C: Operating speeds and maneuverability closely controlled by other traffic; higher delays at intersections than for level of service B due to a significant number of vehicles stopping. Not all signal cycles clear the waiting vehicles. This is the recommended design standard for rural highways.

Level of service D: Tolerable operating speeds; long traffic delays occur at intersections. The influence of congestion is noticeable. At traffic signals many vehicles stop, and the proportion of vehicles not stopping declines. The number of signal cycle failures, for which vehicles must wait through more than one signal cycle, are noticeable. This is typically the design level for urban signalized intersections.

Level of service E: Restricted speeds, very long traffic delays at traffic signals, and traffic volumes near capacity. Flow is unstable so that any interruption, no matter how minor, will cause queues to form and service to deteriorate to level of service F. Traffic signal cycle failures are frequent occurrences. For unsignalized intersections, level of service E or better is generally considered acceptable.

Level of service F: Extreme delays, resulting in long queues which may interfere with other traffic movements. There may be stoppages of long duration, and speeds may drop to zero. There may be frequent signal cycle failures. Level of service F will typically result when vehicle arrival rates are greater than capacity. It is considered unacceptable by most drivers.

LEVEL OF SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-20$
C	$20-35$
D	$35-55$
E	$55-80$
F	>80

LEVEL OF SERVICE CRITERIA

FOR UNSIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-15$
C	$15-25$
D	$25-35$
E	$35-50$
F	>50

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		性		${ }^{*}$	44
Traffic Vol, veh/h	2	1	268	15	10	338
Future Vol, veh/h	2	1	268	15	10	338
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	100	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	40	40	18	18	26	26
Mvmt Flow	2	1	288	16	11	363

Four S Corp Distribution Center 06/04/2018 2029 Buildout Conditions - AM Peak Hour ($40,500 \mathrm{sf}$)

Intersection						
Int Delay, s/veh	2.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		中 ${ }^{\text {a }}$		${ }^{*}$	44
Traffic Vol, veh/h	25	16	268	182	121	338
Future Vol, veh/h	25	16	268	182	121	338
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	100	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	40	40	18	18	26	26
Mvmt Flow	27	17	288	196	130	363

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	828	242	0	0	484	0
Stage 1	386	-	-	-	-	-
Stage 2	442	-	-	-	-	-
Critical Hdwy	7.6	7.7	-	-	4.62	-
Critical Hdwy Stg 1	6.6	-	-	-	-	-
Critical Hdwy Stg 2	6.6	-	-	-	-	-
Follow-up Hdwy	3.9	3.7	-	-	2.46	-
Pot Cap-1 Maneuver	243	655	-	-	924	-
Stage 1	557	-	-	-	-	-
Stage 2	517	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	209	655	-	-	924	-
Mov Cap-2 Maneuver	209	-	-	-	-	-
Stage 1	478	-	-	-	-	-
Stage 2	517	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	19.9		0		2.5	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	285	924	-
HCM Lane V/C Ratio		-	-	0.155	0.141	-
HCM Control Delay (s)		-	-	19.9	9.5	-
HCM Lane LOS		-	-	C	A	-
HCM 95th \%tile Q(veh)		-	-	0.5	0.5	-

Four S Corp Distribution Center 06/04/2018 2029 Buildout Conditions - AM Peak Hour (491,000 sf)

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		作		1	个4
Traffic Vol, veh/h	14	9	341	2	1	563
Future Vol, veh/h	14	9	341	2	1	563
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	100	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	40	40	4	4	5	5
Mvmt Flow	16	10	383	2	1	633

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	703	193	0	0	385	0
Stage 1	384	-	-	-	-	-
Stage 2	319	-	-	-	-	-
Critical Hdwy	7.6	7.7	-	-	4.2	-
Critical Hdwy Stg 1	6.6	-	-	-	-	-
Critical Hdwy Stg 2	6.6	-	-	-	-	-
Follow-up Hdwy	3.9	3.7		-	2.25	-
Pot Cap-1 Maneuver	299	710	-	-	1149	-
Stage 1	558	-	-	-	-	-
Stage 2	608	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	299	710	-	-	1149	-
Mov Cap-2 Maneuver	299	-	-	-	-	-
Stage 1	557	-	-	-	-	-
Stage 2	608	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	15		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	
Capacity (veh/h)		-	-	387	1149	-
HCM Lane V/C Ratio		-	-	0.067	0.001	-
HCM Control Delay (s)		-	-	15	8.1	-
HCM Lane LOS		-	-	C	A	-
HCM 95th \%tile Q(veh)		-	-	0.2	0	-

Four S Corp Distribution Center 06/04/2018 2029 Buildout Conditions - PM Peak Hour (40,500 sf)

Intersection						

Four S Corp Distribution Center 06/04/2018 2029 Buildout Conditions - PM Peak Hour (491,000 sf)

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		性		${ }^{*}$	44
Traffic Vol, veh/h	2	1	268	15	10	338
Future Vol, veh/h	2	1	268	15	10	338
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	100	-
Veh in Median Storage,	\# 2	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	40	40	18	18	26	26
Mvmt Flow	2	1	288	16	11	363

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	500	152	0	0	304	0
Stage 1	296	-	-	-	-	-
Stage 2	204	-	-	-	-	-
Critical Hdwy	7.6	7.7	-	-	4.62	-
Critical Hdwy Stg 1	6.6	-	-	-	-	-
Critical Hdwy Stg 2	6.6	-	-	-	-	-
Follow-up Hdwy	3.9	3.7	-	-	2.46	-
Pot Cap-1 Maneuver	416	759	-	-	1097	-
Stage 1	627	-	-	-	-	-
Stage 2	708	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	412	759	-	-	1097	-
Mov Cap-2 Maneuver	542	-	-	-	-	-
Stage 1	621	-	-	-	-	-
Stage 2	708	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11		0		0.2	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	599	1097	-
HCM Lane V/C Ratio		-	-	0.005	0.01	-
HCM Control Delay (s)		-	-	11	8.3	-
HCM Lane LOS		-	-	B	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Four S Corp Distribution Center 06/04/2018 2029 Buildout Conditions - AM Peak Hour (40,500 sf with TWLTL) DS

Intersection						
Int Delay, s/veh	2.9					
Movement V	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	* ${ }^{\text {F }}$		性		${ }^{1}$	44
Traffic Vol, veh/h	37	25	268	272	182	338
Future Vol, veh/h	37	25	268	272	182	338
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	100	-
Veh in Median Storage, \#	\# 2	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	40	40	18	18	26	26
Mvmt Flow	40	27	288	292	196	363

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1008	290	0	0	580	0
Stage 1	434	-	-	-	-	-
Stage 2	574	-	-	-	-	-
Critical Hdwy	7.6	7.7	-	-	4.62	-
Critical Hdwy Stg 1	6.6	-	-	-	-	-
Critical Hdwy Stg 2	6.6	-	-	-	-	-
Follow-up Hdwy	3.9	3.7	-	-	2.46	-
Pot Cap-1 Maneuver	181	605	-	-	842	-
Stage 1	522	-	-	-	-	-
Stage 2	433	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	139	605	-	-	842	-
Mov Cap-2 Maneuver	216	-	-	-	-	-
Stage 1	400	-	-	-	-	-
Stage 2	433	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	20.9		0		3.7	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	292	842	-
HCM Lane V/C Ratio		-	-	0.228	0.232	-
HCM Control Delay (s)		-	-	20.9	10.6	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	0.9	0.9	-

Four S Corp Distribution Center 06/04/2018 2029 Buildout Conditions - AM Peak Hour (737,000 sf with TWLTL) DS

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		作		1	个4
Traffic Vol, veh/h	14	9	341	2	1	563
Future Vol, veh/h	14	9	341	2	1	563
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	100	-
Veh in Median Storage, \#	2	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, \%	40	40	4	4	5	5
Mvmt Flow	16	10	383	2	1	633

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	703	193	0	0	385	0
Stage 1	384	-	-	-	-	-
Stage 2	319	-	-	-	-	-
Critical Hdwy	7.6	7.7	-	-	4.2	-
Critical Hdwy Stg 1	6.6	-	-	-	-	-
Critical Hdwy Stg 2	6.6	-	-	-	-	-
Follow-up Hdwy	3.9	3.7	-	-	2.25	-
Pot Cap-1 Maneuver	299	710	-	-	1149	-
Stage 1	558	-	-	-	-	-
Stage 2	608	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	299	710	-	-	1149	-
Mov Cap-2 Maneuver	461	-	-	-	-	-
Stage 1	557	-	-	-	-	-
Stage 2	608	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.1		0		0	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	534	1149	-
HCM Lane V/C Ratio		-	-	0.048	0.001	-
HCM Control Delay (s)		-	-	12.1	8.1	-
HCM Lane LOS		-	-	B	A	-
HCM 95th \%tile Q(veh)		-	-	0.2	0	-

Four S Corp Distribution Center 06/04/2018 2029 Buildout Conditions - PM Peak Hour (40,500 sf with TWLTL) DS

[^6]OPTICAL/ELECTRICAL HOUSING
Heavy cast low copper aluminum (A356 alloy; $<0.2 \%$ copper) assembly with integral cooling fins. The Optical Panel mounting surface is milled flat (surface variance $< \pm .003$ ") to facilitate thermal transfer of heat to housing and cooling fins. Solid barrier wall separates optical and electrical compartments. The optical and electrical compartments are integrated to create one assembly. Minimum wall thickness is .188".

SINGLE ARM POST TOP MOUNTING

A single, heavy wall cast aluminum arm (A356 alloy, $<0.2 \%$ copper) connects the Optical/Electrical Housing to the slip fitter hub. Arm is triangular in cross-section transitioning from the apex facing to the pole centerline at the hub to the apex facing outward at the fixture body. Field wiring is accessed through a cover at the mounting hub. Tenon maximum $2^{7 / 8^{\prime \prime}}$ diameter x $31 / 2^{\prime \prime}$ height. All exposed hardware is stainless steel.

PLED ${ }^{\text {w }}$ OPTICS
Emitters (LED's) are arrayed on a metal core PCB panel with each emitter located on a copper thermal transfer pad and enclosed by an LED refractor. In asymmetric distributions, a micro-reflector inside the refractor re-directs the house side emitter output towards the street side and functions as a house side shielding element. Refractors are injection molded H12 acrylic. Each LED refractor is sealed to the PCB to meet an IP66 over an emitter and all refractors are retained by an aluminum frame. Any one Panel, or group of Panels in a luminaire, have the same optical pattern. Panels are field replaceable and field rotatable in pattern. Panels
90° increments.

LED DRIVERS

Drivers are UL and CUL recognized mounted on a single plate and factory prewired with quick-disconnect plugs. Constant current driver is electronic and has a power factor of >0.90 and a minimum operating temperature of $-40^{\circ} \mathrm{F}$. In-line terminal blocks facilitate wiring between the driver and optical arrays. Drivers accept an input of $120-277 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ or $347 \mathrm{~V}-480 \mathrm{~V}, 50,60 \mathrm{~Hz}$. $(0-10 \mathrm{~V}$ dimmable driver is standard. Driver has a minimum of 3 KV internal surge protection. Luminaire supplied with 20KV surge protector for field accessible installation.)

AMBER LED's

PCA (Phosphor Converted Amber) LED's utilize phosphors to create color output similar to LPS Iamps and have a slight output in the blue spectral bandwidth. TRA (True Amber) LED's utilize material that emits light in the amber spectral bandwidth only without the use of phosphors.

FINISH

Electrostatically applied TGIC Polyester Powder Coat on substrate prepared with 20 PSI power wash at $140^{\circ} \mathrm{F}$. Four step sand blast and iron phosphate pretreatment for protection and paint adhesion. $400^{\circ} \mathrm{F}$ bake for maximum hardness and durability. Texture finish is standard.

PROJECT NAME:

FIXTURE TYPE:

FRONT VIEW

RZR- PTI SERIES - PLED

S P E C I F I C A T I O N S

PLED"' MODULES

				pro	imate (Lumens	Avera median	ge Lu all dist	mens butions)	4000K			
		350 mA			525 mA			700 mA			1050mA	
	Watts	Lumens	HID Eq.									
40	45	5997	100-	66	8653	$100-$	87	10995	175	134	14647	${ }_{250}^{200}$
80	87	11622	$175-$	131	16736	250	174	21235	400	N/A	N/A	N/A

Spec/Order Example: RZR-PT1-LED/PLED-V-SQ/80LED-700mA/NW/277/RAL9005

RZR- PTI SERIES - PLED

LED/ELECTRICAL GUIDE

LED COUNT	$\begin{aligned} & \text { SOURCE } \\ & \text { TYPE } \end{aligned}$	SOURCE	INITIAL LUMENS 4000K CCT	INITIAL LUMENS 3000K CCT	INITIAL LUMENS 5000 K CCT	L70 GREATER THAN (HR)	STARTING TEMP.	SYSTEM WATTS	VOLTS	MAX INPUT AMPS
40	LED	40 PLED Optical Module - 350 mA	$\begin{aligned} & 5,585- \\ & 6,408 \end{aligned}$	$\begin{aligned} & 5,306- \\ & 6,088 \end{aligned}$	$\begin{aligned} & 5,864- \\ & 6,729 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	45	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.17 \end{aligned}$
40	LED	40 PLED ${ }^{\circ}$ Optical Module - 525 mA	$\begin{aligned} & 8,059- \\ & 9,246 \end{aligned}$	$\begin{aligned} & 7,656- \\ & 8,784 \end{aligned}$	$\begin{aligned} & 8,462- \\ & 9,709 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	66	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.24 \end{aligned}$
40	LED	40 PLED ${ }^{\circ}$ Optical Module - 700mA	$\begin{aligned} & 10,240- \\ & 11,749 \end{aligned}$	$\begin{aligned} & 9,728- \\ & 11,162 \end{aligned}$	$\begin{aligned} & 10,752- \\ & 12,337 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	87	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.32 \end{aligned}$
40	LED	40 PLED ${ }^{\circ}$ Optical Module - 1050mA	$\begin{aligned} & 13,642- \\ & 15,652 \end{aligned}$	$\begin{aligned} & 12,960- \\ & 14,870 \end{aligned}$	$\begin{aligned} & 14,324- \\ & 16,435 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	134	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 0.49 \end{aligned}$
80	LED	80 PLED ${ }^{\text {² }}$ Optical Module - 350 mA	$\begin{aligned} & 10,824- \\ & 12,419 \end{aligned}$	$\begin{aligned} & 10,283- \\ & 11,798 \end{aligned}$	$\begin{aligned} & 11,365- \\ & 13,040 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	87	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.33 \end{aligned}$
80	LED	80 PLED ${ }^{\circ}$ Optical Module - 525mA	$\begin{aligned} & 15,587- \\ & 17,884 \end{aligned}$	$\begin{aligned} & 14,808- \\ & 16,990 \end{aligned}$	$\begin{aligned} & 16,366- \\ & 18,778 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	131	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 0.48 \end{aligned}$
80	LED	80 PLED ${ }^{\text {² }}$ Optical Module - 700mA	$\begin{aligned} & 19,767- \\ & 22,680 \end{aligned}$	$\begin{aligned} & 18,779- \\ & 21,546 \end{aligned}$	$\begin{aligned} & 20,755- \\ & 23,814 \end{aligned}$	60,000+	$-20^{\circ} \mathrm{F}$	174	$\begin{aligned} & 120 \\ & 277 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 0.63 \end{aligned}$

[^7]
Evolve"' LED Wall Pack

N Series (EWNB)

Product Features

The next generation of the GE Evolve ${ }^{\text {TM }}$ LED Wall Pack is designed to efficiently illuminate walkways, area, and general lighting applications. The EWNB features an advanced LED optical system that provides high uniformity, excellent vertical light distribution, reduced on-site glare and effective security light levels. The EWNB Wall Pack offers identical photometrics to the EANB Area Light, which allows lighting designers to capitalize on the same features without compromising site layouts. In keeping with a sleek design strategy, this product offers a modern look, balancing the need for photometric scalability with reliable workhorse performance.

Applications

- Wall mounted, site, area and general lighting utilizing an advanced LED optical system providing uniformity, vertical light distribution, reduced on-site glare and effective security light levels.

Housing

- Die-cast aluminum housing.
- Slim architectural design incorporates an integral heat sink and light engine, ensuring maximum heat transfer, long LED life, and a reduced Effective Projected Area (EPA).
- Meets 1G vibration level per ANSI C136.31-2001. For 2 G rating contact manufacturer.

LED \& Optical Assembly

- Structured LED array for optimized area light and wall pack photometric distribution.
- Evolve ${ }^{\text {TM }}$ LED light engine utilizes reflective technology to optimize application efficiency and minimize glare.
- Utilizes high brightness LEDs, 70 CRI at 3000K, 4000K \& 5000K typical.

Lumen Maintenance

- Projected L90>50,000 hours per IES TM-21
- Projected Lxx per IES TM-21 at $25^{\circ} \mathrm{C}$ for reference:

	LXX (10K)@HOURS		
SKU	25,000 HR	50,000 HR	100,000 HR
EWNB	L98	L95	L90

NOTES: 1) Projected Lxx based on LM-80 (10,000 hour testing).
2) DOE Lighting Facts Verification Testing Tolerances apply to initial
luminous flux and lumen maintenance measurements.
Lumen Ambient Temperature Factors:

LUMEN AMBIENT TEMPERATURE FACTORS:	
AMBIENT TEMPERATURE ${ }^{\circ} \mathrm{C}$ ($)$	
INITIAL FLUX FACTOR	
10	1.02
20	1.01
25	1.00
30	0.99
40	0.98
50	0.97

DLC Standard qualified models available. Please refer to
http://www.designlights.org/QPL for complete information.

Ratings

- (【l)/(【LI) listed, suitable for wet locations.
- IP66 rated optical enclosure per ANSI C136.25-2009.
- Temperature rated at -40° to $50^{\circ} \mathrm{C}$.
- Upward Light Output Ratio (ULOR) $=0$
- Title 24 compliant with "H" motion sensor option.
- Compliant with the material restriction requirements of RoHS.

Mounting

- Flush wall mount with convenient tab and slot mounting for easy "J" box installation. $1 / 2$ " conduit holes are included for non-"J" box installation.

Finish

- Corrosion resistant polyester powder painted, minimum 2.0 mil. thickness.
- Standard colors: Black and Dark Bronze.
- RAL \& custom colors available.

Electrical

- 120-277 VAC and 347-480 VAC available.
- System power factor is $>90 \%$ and THD $<20 \%$.
- ANSI C136.41 7-pin dimming receptacle, standard.
- ANSI photo electric sensors (PE) available for all voltages. Light Grid compatible.
- Dimming/Occupancy:
- Wired 0-10V continuous dimming
- DALI digital dimming. Contact manufacturer for availability.
- Standalone motion sensor based dimming using "H" option code.
- Surge Protection per ANSI C136.2-2015. - 6kV/3kA "Basic" surge protection, standard.
- 10kV/5kA "Enhanced" surge protection optional.
- EMI: Title 47 CFR Part 15 Class A

Accessories

- Escutcheon Plates - See page 6
- PE Accessories - See Page 3

PE Accessories (to be ordered separately)

SAP Number	Part Number	Description	SAP Number	Part Number	Description
93029237	PED-MV-LED-7	ANSI C136.41 Dimming PE, 120-277V	28299	PECOTL	STANDARD 120-277V
93029238	PED-347-LED-7	ANSI C136.41 Dimming PE, 347V	28294	PEC5TL	STANDARD 480V
93029239	PED-480-LED-7	ANSI C136.41 Dimming PE, 480V	80436	PECDTL	STANDARD 347V
			73251	SCCL-PECTL	Shorting cap

Photometrics

Product Dimensions

Side View

Back View

[^8]
Accessories:

Escutcheon Plates

Cover unsightly debris and marks left behind from replacing HID product with escutcheon plates. Available in square and rectangular sizes, as well as in an assortment of colors to match the luminaire. Accessories are ordered and shipped separately from the luminaire.

E W N

PROD. ID	PHOTOMETRIC SERIES	DETAIL	COLOR
$\begin{aligned} & \mathrm{E}=\text { Evolve } \\ & \mathrm{W}=\text { Wall Pack } \\ & \mathrm{N}=\begin{array}{l} \text { Housing } \\ \text { Series } \end{array} \end{aligned}$	$\mathrm{E}=\underset{\text { Escutcheon }}{\text { Plate }}$	$\begin{aligned} & 1=17^{\prime \prime} \times 11^{\prime \prime} \\ & 2=18^{\prime \prime} \times 18^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { BLCK }=\text { Black } \\ & \text { DKBZ }=\text { Dark Bronze } \\ & \text { GRAY }=\text { Gray } \\ & \text { WHTE }=\text { White } \end{aligned}$ RAL custom colors available. Contact Manufacturer.

H-Motion Sensing Option:

- Intended for mounting applications between $8-25 \mathrm{ft}$.
- Provides a coverage area radius for walking motion of 15-20ft (4.57-6.10m).
- Provides 180° of coverage (180° is blocked by the wall).
- Delivered factory setting of 50% dimmed light output with no occupancy.
- May be reprogrammed using additional remote programmer. Remote Programmer part number: WS FSIR-100 PROGRAMMER (197634)

- Photoelectric control is integrated through the motion sensor, and is offered as standard.

Sensor Pattern:

Sensing Pattern Wall Pack Fixture $8-25 \mathrm{ft}$.

current

All trademarks are the property of their respective owners. Information provided is subject to change without notice. All values are design or tupical values when measured under laboratory change without notice. All values are design or typical values when measured und
© 2017 GE.
OLP3116 (Rev 05/04/17)

Preliminary Title Report
 5th SUPPLEMENTAL

Date Prepared:
August 29, 2018
When Replying Please Contact:
Escrow Officer:
Cheryl Springer Lentz
cspringer@ortc.com
503-219-2300

Title Officer:
Christine Ritter
critter@ortc.com

Our Order Number 5516000168-CS

Buyer:
Four-S Corp.
Donald F. Stanaway, II
Scott H. Stanaway
Seller:
Ronald L. Endicott

Property Address:

12200 SW Myslony Street, Tualatin, OR 97062

In response to the above referenced application for a policy of title insurance, OLD REPUBLIC TITLE COMPANY OF OREGON, as Issuing Agent of Old Republic National Title Insurance Company, hereby reports that it is prepared to issue, or cause to be issued, as of the effective date hereof, a Policy or Policies of Title Insurance, and in the form and amount shown in Schedule A, describing the land and the estate or interest therein hereinafter set forth, insuring against loss which may be sustained by reason of any defect, lien or encumbrance not shown or referred to as an Exception in Schedule B below or not excluded from coverage pursuant to the printed Schedules, Conditions and Stipulations of said policy forms.

The printed Exceptions and Exclusions from the coverage and Limitations on Covered Risks of said Policy or Policies are set forth in Exhibit I attached.

Please read the exceptions shown or referred to below and the exceptions and exclusions set forth in Exhibit I of this report carefully. The exceptions and exclusions are meant to provide you with notice of matters which are not covered under the terms of the title insurance policy and should be carefully considered.

This report is for the exclusive use of the person to whom it is addressed, is preliminary to the issuance of a policy of title insurance issued by Old Republic National Title Insurance Company and shall become null and void unless a policy is issued and the full premium paid. Title insurance is conditioned on recordation of satisfactory instruments that establish the interests of the parties to be insured; until such recordation, the Company may cancel or revise this report for any reason.

SCHEDULE A

1. Effective Date:

August 24, 2018
2. The Policies and endorsements to be insured and the related premiums are:

	Amount	Premium
ALTA Owners Policy - 2006 (OTIRO No. PO-04)	$\$ 2,100,000.00$	$\$ 3,750.00$
Total Owner Policy Premium	$\$ 3,750.00$	
Proposed Insured: Four-S Corp., Donald F. Stanaway, II and Scott H.		
Stanaway	$\$ 1,374,644.00$	$\$ 2,100.00$
Transfer Tax	$\$ 100.00$	
ALTA STANDARD Loan Policy -2006 (OTIRO No. PL-05)		
Total 1st Loan Policy Premium		
Proposed Insured: Stockman Bank		

Local Govt. Lien Search Charge: \$25.00
3. Title to the estate or interest in the land is at the Effective Date vested in:

Ronald L. Endicott
4. The estate or interest in the land described or referred is:

Fee
5. The land referred to in this report is described as follows:

Lots 1 and 2, and the West three-fourths of Lot 3, EXCEPT the North 163 feet of said Lot 3, TUALATIN VALLEY ACRES, Washington County, Oregon.

Together with an easement over the East 30 feet of the North 163 feet of the West three-fourths of Lot 3, TUALATIN VALLEY ACRES, as set forth in Deed recorded June 20, 1969, in Book 747, Page 548, Records of Washington County.

EXCEPTING THEREFROM that portion conveyed to the City of Tualatin for road purposes in deed recorded March 26, 2002 as Recorder's Fee Number 2002-034631, Washington County Records.

FUTHER EXCEPTING THEREFROM that portion conveyed to the City of Tualatin for road purposes in deed recorded June 14, 2006, as Recorder's Fee Number 2006-071111, Washington County Records.

SCHEDULE B

STANDARD EXCEPTIONS

1. Tax or assessments which are not shown as existing liens by the records of any taxing authority that levies taxes or assessments on real property or by the public record; proceedings by a public agency which may result in taxes or assessments, or notices of such proceedings, whether or not shown by the records of such agency or by the public records.
2. Any facts, rights, interests or claims which are not shown by the public records but which could be ascertained by an inspection of said land or by making inquiry of persons in possession thereof.
3. Easements, claims of easements, or encumbrances not shown by the public records, reservations or exceptions in patents or in acts authorization the issuance thereof; water rights, claims or title to water.
4. Any encroachment (of existing improvements located on the subject land onto adjoining land or of existing improvements located on adjoining land onto the subject land), encumbrance, violation, variation, or adverse circumstance affecting the title that would be disclosed by an accurate and complete land survey of the subject land.)
5. Any lien, or right to lien, for unemployment taxes, workmen's compensation, services, labor, equipment rental or material heretofore or hereafter furnished, imposed by law and not shown by the public records.

The exceptions to coverage 1-5 inclusive as set forth above will remain on any subsequently issued Standard Coverage Title Insurance Policy.

In order to remove these exceptions to coverage in the issuance of any Extended Coverage Policy the following items are required to be furnished to the Company; additional exceptions to coverage may be added upon review of such information;
A. Survey or alternative acceptable to the Company
B. Affidavit regarding possession
C. Proof that there is no new construction or remodeling of any improvement located on the premises. In the event of new construction or remodeling the following is required.
i. Satisfactory evidence that no construction liens will be filed; or
ii. Adequate security to protect against actual or potential construction liens.
iii. Payment of additional premiums as required by the Industry Rate filing approved by the Insurance Division of the State of Oregon.

SPECIAL EXCEPTIONS
6. Taxes and assessments, general and special, for the fiscal year 2018-2019, a lien, but not yet due or payable.

Taxes and assessments, general and special, for the fiscal year 2017-2018, paid in full:
Assessor's Parcel No. : R530544
Map Tax No. : $\underline{2 S 122 \mathrm{C}-01600}$
Code No. : 088.15
Original Amount : \$6,230.90
7. Local agency liens, if any, in favor of the City of Tualatin.

8. INTENTIONALLY DELETED

9. Rights of the public, County and/or City, in and to that portion of said land lying within the lines of streets, roads and highways.
10. Conditions, restrictions and/or easements contained in and imposed by Ordinance No. 674-85, Leveton Tax Increment Plan, Recorded: September 24, 1985, Recording No.: 85-037690

Amended by instrument,
Recorded: September 24, 1985, Recording No. 85-037691
Recorded: September 21, 1989, Recording No. 89-044013
Recorded: June 29, 1998, Recording No. 98-069448
Recorded: May 23, 2002, Recording No. 2002-059374
11. The herein described property is within, and is subject to the regulations and restrictions of the Tualatin Central Urban Renewal Area, as imposed by the City of Tualatin, including any amendments thereto.
Recorded: June 11, 1998, Recording No. 98-062035
12. An easement affecting that portion of said land and for the purposes stated herein and incidental purposes as provided in the following

Granted To : City of Tualatin
For : Slope and public utility
Recorded : June 14, 2006 in Official Records under Document No. $\underline{2006-071112}$

13. INTENTIONALLY DELETED

14. Rights of tenants in possession as tenants only under unrecorded leases.
15. Personal property taxes, if any.

16. INTENTIONALLY DELETED

17. We find no open Deeds of Trust of record. Please verify by inquiry of Escrow Personnel and/or Agents whether or not we have overlooked something and advise the Title Dept. accordingly prior to closing.

End of Exceptions

A. There are no matters against the party(ies) shown below which would appear as exceptions to coverage in a title insurance product:

Parties: Ronald L. Endicott, Donald F. Stanaway or Scott H. Stanaway
B. Note: Examination of judgments and/or tax liens pertaining to Four-S Corp has not been done. Any judgments and/or tax liens against said party will become a lien against the subject property upon said party acquiring legal title.
C. A copy of a proper resolution authorizing the execution of the documents to be insured passed by Board of Directors of Four-S Corporation, must be furnished prior to closing. The resolution should specify the officers authorized to sign on behalf of the corporation.
D. The above numbered report (including any supplements or amendments thereto) is hereby modified and/or supplemented to reflect the following additional items relating to the issuance of an American Land Title Association loan form policy:

NONE
NOTE: Our investigation has been completed and there is located on said land a commercial building known as 12200 SW Myslony Street, Tualatin, OR 97062.

The ALTA loan policy, when issued, will contain the ALTA 9 Endorsement and 22 series Endorsement.
Unless shown elsewhere in the body of this report, there appear of record no transfers or agreements to transfer the land described herein within the last three years prior to the date hereof, except as follows:

Quitclaim Deed executed by Cindy R. Woods to Ronald L. Endicott, recorded June 8, 2012 in Official Records under Document No. 2012-046648.

Personal Representative's Deed executed by Joann M. Endicott, the duly appointed, qualified and acting personal representative of the estate of Ronald G. Endicott, deceased to Ronald L. Endicott and Cindy R. Woods, each as to an undivided 50\% interest, recorded June 08, 2012 in Official Records under Document No. 2012-046647.

Warranty Deed executed by Vito Elmer Pileggi and Thelma E. Pileggi to Ronald G. Endicott and Henrietta L. Endicott, recorded June 14, 1971 in Official Records under Document No. Book: 826, Page: 501.
E. NOTE: Due to the differences between federal and state laws concerning marijuana and the activities associated with it, including but not limited to its cultivation, manufacture, distribution or sale, Old Republic Title will not close or insure any transaction involving property that is associated with these activities.
F. NOTE: No utility search has been made or will be made for water, sewer or storm drainage charges unless the City/Service District claims them as liens (i.e. foreclosable) and reflects them on its lien docket as of the date of closing. Buyers should check with the appropriate city bureau or water service district and obtain a billing cutoff. Such charges must be adjusted outside of escrow.
G. Facts, rights, interests or claims which are not shown by the public records but which could be ascertained by an inspection of the Land or by making inquiry of persons in possession thereof. To remove this item, the Company will require an affidavit and indemnity on a form supplied by the Company.
H. Any lien, or right to a lien, for services, labor, material, equipment rental or workers compensation heretofore or hereafter furnished, imposed by law and not shown by the public records. To remove this item, the Company will require an affidavit and indemnity on a form supplied by the Company.
I. IMPORTANT NOTICE TO TRANSFEROR(S) REGARDING WITHHOLDING TAX:

Effective January 1, 2008, Oregon law (ORS 314.258) requires closing agents closing a transaction for the transfer of certain Oregon real property interests to: (a) withhold from the transferor's proceeds an amount specified by law; and (b) remit the amount withheld to the Oregon Department of Revenue.

State mandated forms must be completed by all transferors in order to either: (a) claim or certify an exemption from the requirements of ORS 314.258; or (b) certify the withholding amount due pursuant to ORS 314.258.

You should consult with your tax or legal advisor in order to complete these forms prior to the closing of your transaction. Failure to timely deliver the appropriate form(s) to your closing agent may delay your closing or increase your withholding amount.

We are not legal or tax advisors. Although we may provide you with these forms and provide some assistance in filling out the forms, by law we are unable to advise you on the selection of which form(s) you must complete or the content in the forms.
J. Recording charge (per document):

COUNTY: FIRST PAGE EACH ADDITIONAL PAGE
Clackamas $\$ 53.00 \$ 5.00$ | Multnomah $\$ 42.00 \$ 5.00$ | Washington $\$ 41.00 \$ 5.00$
**NOTE: A multiple transaction document bears an additional $\$ 5.00$ charge for each additional transaction. A document that fails to conform to certain formatting and page one requirements bears an additional $\$ 20.00$ charge.

RECORDING CHARGES ARE SUBJECT TO CHANGE WITHOUT NOTICE.
NOTE REGARDING ARBITRATION: THE POLICY OR POLICIES OF TITLE INSURANCE TO BE ISSUED WILL CONTAIN A CLAUSE PERMITTING ARBITRATION OF CLAIMS AT THE REQUEST OF EITHER THE INSURED OR THE COMPANY. UPON REQUEST, THE COMPANY WILL PROVIDE A COPY OF THIS CLAUSE AND THE CURRENTLY APPLICABLE ARBITRATION RULES. FOR THE APPLICABLE ENDORSEMENT CHARGE, THE COMPANY WILL DELETE THE ARBITRATION CLAUSE IF IT RECEIVES BEFORE CLOSING A WRITTEN REQUEST FOR THE ENDORSEMENT.
K. NOTE: It is our policy in Oregon to identify a reduced title insurance charge on Schedule A when it appears to us that your transaction qualifies for a reduced charge. The reduction usually is computed as a percentage of the Company's basic rate. If a reduced charge appears on Schedule A, it is one of the following:

Short Term Rate: A discount of 25% of the basic rate applies when title insurance has been issued for the property within the previous three years.

Builder-Developer Rate: A discount of 35% of the basic rate may apply when a party to the transaction is a builder or developer and the property is residential.

Simultaneous Issue Rate: A special rate may apply when two or more policies are issued simultaneously, such as a loan policy with an owner's policy or two loan policies.

IF YOU THINK A REDUCED RATE APPLIES TO YOUR TRANSACTION BUT IT DOES NOT APPEAR ON SCHEDULE A, PLEASE INFORM YOUR ESCROW OFFICER OR TITLE OFFICER. You may contact your escrow officer or title officer at the phone number, email address or mailing address shown on this report.

IMPORTANT NOTICE TO TRANSFEROR(S) REGARDING WITHHOLDING TAX:

Effective January 1, 2008, Oregon law (ORS 314.258) requires closing agents closing a transaction for the transfer of certain Oregon real property interests to: (a) withhold from the transferor's proceeds an amount specified by law; and (b) remit the amount withheld to the Oregon Department of Revenue.

State mandated forms must be completed by all transferors in order to either: (a) claim or certify an exemption from the requirements of ORS 314.258; or (b) certify the withholding amount due pursuant to ORS 314.258.

You should consult with you tax or legal advisor in order to complete these forms prior to the closing of your transaction. Failure to timely deliver the appropriate form(s) to your closing agent may delay your closing or increase your withholding amount.

We are not legal or tax advisors. Although we may we may provide you with these forms and provide some assistance in filling out forms, by law we are unable to advise you on the selection of which form(s) you must complete or the content in the forms.

NOTICE TO CUSTOMERS

YOU WILL BE REVIEWING, APPROVING AND SIGNING IMPORTANT DOCUMENTS AT CLOSING. LEGAL
CONSEQUENCES FOLLOW FROM THE SELECTION AND USE OF THESE DOCUMENTS. THESE
CONSEQUENCES AFFECT YOUR RIGHTS AND OBLIGATIONS. YOU MAY CONSULT AN ATTORNEY ABOUT
THESE DOCUMENTS. YOU SHOULD CONSULT AN ATTORNEY IF YOU HAVE QUESTIONS OR CONCERNS
ABOUT THE TRANSACTON OR ABOUT THE DOCUMENTS. IF YOU WISH TO REVIEW TRANSACTION
DOCUMENTS THAT YOU HAVE NOT YET SEEN, PLEASE CONTACT THE ESCROW AGENT.

CONDITIONS

The policy to be issued contains an arbitration clause. All arbitrable matters when the Amount of Insurance is $\$ 2,000,000$ or less shall be arbitrated at the option of either the Company of Insured as the exclusive remedy of the parties. You may review a copy of the arbitration rules at http://www.alta.org. If a policy other than the 2006 ALTA Owner's Policy of Title Insurance, 2006 ALTA Loan Policy of Title Insurance or 2006 ALTA Short Form Residential Loan Policy is ultimately issued, the arbitration provisions of the issued policy shall control.

AMERICAN LAND TITLE ASSOCIATION
 OWNER'S POLICY OF TITLE INSURANCE - 2006 EXCLUSIONS FROM COVERAGE

The following matters are expressly excluded from the coverage of this policy, and the Company will not pay loss or damage, costs, attorneys' fees, or expenses that arise by reason of

1. (a) Any law, ordinance, permit, or governmental regulation (including those relating to building and zoning) restricting, regulating, prohibiting, or relating to
(ii) the occupancy, use, or enjoyment of the Land;
(iii) the character, dimensions, or location of any improvement erected on the Land;
(iv) the subdivision of land; or
(v) environmental protection; or the effect of any violation of these laws, ordinances, or governmental regulations. This Exclusion 1(a) does not modify or limit the coverage provided under Covered Risk 5
(b) Any governmental police power. This Exclusion 1(b) does not modify or limit the coverage provided under Covered Risk 6.
2. Rights of eminent domain. This Exclusion does not modify or limit the coverage provided under Covered Risk 7 or 8.
3. Defects, liens, encumbrances, adverse claims, or other matters
(a) created, suffered, assumed, or agreed to by the Insured Claimant;
(b) not Known to the Company, not recorded in the Public Records at Date of Policy, but Known to the Insured Claimant and not disclosed in writing to the Company by the Insured Claimant prior to the date the Insured Claimant became an Insured under this policy;
(c) resulting in no loss or damage to the Insured Claimant;
(d) attaching or created subsequent to Date of Policy (however, this does not modify or limit the coverage provided under Covered Risk 9 and 10); or
(e) resulting in loss or damage that would not have been sustained if the Insured Claimant had paid value for the Title.
4. Any claim, by reason of the operation of federal bankruptcy, state insolvency, or similar creditors' rights laws, that the transaction vesting the Title as shown in Schedule A, is
(a) a fraudulent conveyance or fraudulent transfer; or
(b) a preferential transfer for any reason not stated in Covered Risk 9 of this policy.
5. Any lien on the Title for real estate taxes or assessments imposed by governmental authority and created or attaching between Data of Policy and the date of recording of the deed or other instrument of transfer in Public Records that vests Title as shown in Schedule A.

EXCEPTIONS FROM COVERAGE - SCHEDULE B, PART ONE

This policy does not insure against loss or damage (and the Company will not pay costs, attorneys' fees or expenses) that arise by reason of:

1. (a) Taxes or assessments that are not shown as existing liens by the records of any taxing authority that levies taxes or assessments on real property or by the Public Records; (b) proceedings by a public agency that may result in taxes or assessments, or notices of such proceedings, whether or not shown by the records of such agency or by the Public Records
2. Any facts, rights, interests, or claims that are not shown by the Public Records but that could be ascertained by an inspection of the Land or that may be asserted by persons in possession of the Land.
3. Easements, liens or encumbrances, or claims thereof, not shown by the Public Records.
4. Any encroachment, encumbrance, violation, variation, or adverse circumstance affecting the Title that would be disclosed by an accurate and complete land survey of the Land and not shown by the Public Records.
5. (a) Unpatented mining claims; (b) reservations or exceptions in patents or in Acts authorizing the issuance thereof; (c) water rights, claims or title to water, whether or not the matters excepted under (a), (b), or (c) are shown by the public records.
6. Any lien or right to a lien for services, labor or material not shown by the public records.

AMERICAN LAND TITLE ASSOCIATION
 LOAN POLICY OF TITLE INSURANCE - 2006
 EXCLUSIONS FROM COVERAGE

The following matters are expressly excluded from the coverage of this policy, and the Company will not pay loss or damage, costs, attorneys' fees, or expenses that arise by reason of:

1. (a) Any law, ordinance, permit, or governmental regulation (including those relating to building and zoning) restricting, regulating, prohibiting, or relating to
(i) the occupancy, use, or enjoyment of the Land;
(ii) the character, dimensions, or location of any improvement erected on the Land;
(iii) the subdivision of land; or
(iv) environmental protection; or the effect of any violation of these laws, ordinances, or governmental regulations.

This Exclusion 1(a) does not modify or limit the coverage provided under Covered Risk 5.
(b) Any governmental police power. This Exclusion 1(b) does not modify or limit the coverage provided under Covered Risk 6.
2. Rights of eminent domain. This Exclusion does not modify or limit the coverage provided under Covered Risk 7 or 8.
3. Defects, liens, encumbrances, adverse claims, or other matters
(a) created, suffered, assumed, or agreed to by the Insured Claimant;
(b) not Known to the Company, not recorded in the Public Records at Date of Policy, but Known to the Insured Claimant and not disclosed in writing to the Company by the Insured Claimant prior to the date the Insured Claimant became an Insured under this policy;
(c) resulting in no loss or damage to the Insured Claimant;
(d) attaching or created subsequent to Date of Policy (however, this does not modify or limit the coverage provided under Covered Risk 11, 13, or 14); or
(e) resulting in loss or damage that would not have been sustained if the Insured Claimant had paid value for the Insured Mortgage.
4. Unenforceability of the lien of the Insured Mortgage because of the inability or failure of an Insured to comply with applicable doing-business laws of the state where the Land is situated.
5. Invalidity or unenforceability in whole or in part of the lien of the Insured Mortgage that arises out of the transaction evidenced by the Insured Mortgage and is based upon usury or any consumer credit protection or truth-in-lending law.
6. Any claim, by reason of the operation of federal bankruptcy, state insolvency, or similar creditors' rights laws, that the transaction creating the lien of the Insured Mortgage, is
(a) a fraudulent conveyance or fraudulent transfer,or
(b) a preferential transfer for any reason not stated in Covered Risk 13(b) of this policy.
7. Any lien on the Title for real estate taxes or assessments imposed by governmental authority and created or attaching between Date of Policy and the date of recording of the Insured Mortgage in the Public Records. This Exclusion does not modify or limit the coverage provided under Covered Risk 11(b).

EXCEPTIONS FROM COVERAGE - SCHEDULE B, PART 1, SECTION ONE

This policy does not insure against loss or damage (and the Company will not pay costs, attorneys' fees or expenses) that arise by reason of:

1. (a) Taxes or assessments that are not shown as existing liens by the records of any taxing authority that levies taxes or assessments on real property or by the Public Records; (b) proceedings by a public agency that may result in taxes or assessments, or notices of such proceedings, whether or not shown by the records of such agency or by the Public Records.
2. Any facts, rights, interests, or claims that are not shown by the Public Records but that could be ascertained by an inspection of the Land or that may be asserted by persons in possession of the Land.
3. Easements, liens or encumbrances, or claims thereof, not shown by the Public Records.
4. Any encroachment, encumbrance, violation, variation, or adverse circumstance affecting the Title that would be disclosed by an accurate and complete land survey of the Land and not shown by the Public Records.
5. (a) Unpatented mining claims; (b) reservations or exceptions in patents or in Acts authorizing the issuance thereof; (c) water rights, claims or title to water, whether or not the matters excepted under (a), (b), or (c) are shown by the Public Records.

Why?	Financial companies choose how they share your personal information. Federal law gives consumers the right to limit some but not all sharing. Federal law also requires us to tell you how we collect, share, and protect your personal information. Please read this notice carefully to understand what we do.
What?	The types of personal information we collect and share depend on the product or service you have with us. This information can include: - Social Security number and employment information - Mortgage rates and payments and account balances
- Checking account information and wire transfer instructions	
When you are no longer our customer, we continue to share your information as described in	
this notice.	

Reasons we can share your personal information	Does Old Republic Title share?	Can you limit this sharing?
For our everyday business purposes - such as to process your transactions, maintain your account(s), or respond to court orders and legal investigations, or report to credit bureaus	Yes	No
For our marketing purposes - to offer our products and services to you	No	We don't share
For joint marketing with other financial companies	No	We don't share
For our affiliates' everyday business purposes - information about your transactions and experiences	Yes	No
For our affiliates' everyday business purposes - information about your creditworthiness	No	We don't share
For our affiliates to market to you	No	We don't share
For non-affiliates to market to you	No	We don't share

Who we are

Who is providing this notice?
Companies with an Old Republic Title name and other affiliates. Please see below for a list of affiliates.

What we do

How does Old Republic Title protect my personal information?	To protect your personal information from unauthorized access and use, we use security measures that comply with federal law. These measures include computer safeguards and secured files and buildings. For more information, visit http://www.OldRepublicTitle.com/newnational/Contact/privacy.
How does Old Republic Title collect my personal information?	We collect your personal information, for example, when you: - Give us your contact information or show your driver's license - Show your government-issued ID or provide your mortgage information - Make a wire transfer We also collect your personal information from others, such as credit bureaus, affiliates, or other companies.
Why can't I limit all sharing?	Federal law gives you the right to limit only: - Sharing for affiliates' everyday business purposes - information about your creditworthiness - Affiliates from using your information to market to you - Sharing for non-affiliates to market to you State laws and individual companies may give you additional rights to limit sharing. See the "Other important information" section below for your rights under state law.

Definitions

Affiliates	Companies related by common ownership or control. They can be financial and nonfinancial companies. - Our affiliates include companies with an Old Republic Title name, and financial companies such as Attorneys' Title Fund Services, LLC, Lex Terrae National Title Services, Inc., Mississippi Valley Title Services Company, and The Title Company of North Carolina.
Non-affiliates	Companies not related by common ownership or control. They can be financial and non-financial companies. - Old Republic Title does not share with non-affiliates so they can market to you.
Joint marketing	A formal agreement between non-affiliated financial companies that together market financial products or services to you. - Old Republic Title doesn't jointly market.

Other Important Information

Oregon residents only: We are providing you this notice under state law. We may share your personal information (described on page one) obtained from you or others with non-affiliate service providers with whom we contract, such as notaries and delivery services, in order to process your transactions. You may see what personal information we have collected about you in connection with your transaction (other than personal information related to a claim or legal proceeding). To see your information, please click on "Contact Us" at www.oldrepublictitle.com and submit your written request to the Legal Department. You may see and copy the information at our office or ask us to mail you a copy for a reasonable fee. If you think any information is wrong, you may submit a written request online to correct or delete it. We will let you know what actions we take. If you do not agree with our actions, you may send us a statement.

Affiliates Who May be Delivering This Notice

American First Abstract, LLC	American First Title \& Trust Company	American Guaranty Title Insurance Company	Attorneys' Title Fund Services, LLC	Compass Abstract, Inc.
eRecording Partners Network, LLC	Genesis Abstract, LLC	Kansas City Management Group, LLC	L.T. Service Corp.	
Lex Terrae National Title Services, Inc.	Lex Terrae, Ltd.	Mara Escrow Company	Mississippi Valley Title Services Company Company	National Title Agent's Services Company
Old Republic Branch Information Services, Inc.	Old Republic Diversified Services, Inc.	Old Republic Exchange Company	Old Republic National Title Insurance Company	Old Republic Title and Escrow of Hawaii, Ltd.
Old Republic Title Company Title Co. of Oregon	Old Republic Title Company of Conroe	Old Republic Title Company of Indiana of St. Louis	Old Republic Title Company of Nevada	Old Republic Title
Company of Oklahoma				

Four S Properties Building Storm Drainage Calculations

SW Myslony Street
Tualatin, Oregon

August 2018
Project Number: 18206

TM RIPPEY
 CONSULTING ENGINEERS
 7650 SW Beveland Street,
 Suite 100
 Tigard, Oregon 97223

Phone: 5034433900
Fax: 5034433700
email:kkoroch@tmrippey.com

Table of Contents

Introduction 1
Water Quality Treatment 1
Runoff Flow Control 2
Downstream Analysis 3Appendix 1 Storm Drainage CalculationsHydroCAD Output for DetentionHydroCAD Output for Pipe Sizing
Site Conveyance Calculations
Water Quality Treatment Calculations
Basin Map
City As Built Plans
Appendix 2 Construction Plans
Appendix 3 Operation and Maintenance Plan

Introduction

This project is a new commercial building and is located south of SW Myslony Street, east of SW $124^{\text {th }}$ Avenue in Tualatin. The site is largely undeveloped although a single family residence and storage building exist on the eastern portion of the site. These two structures will remain until future site development occurs. The proposed development is a new commercial building to be located on the western portion of the site.

The site consists of one parcel, Tax Lot 1600 which is approximately 5.26 acres.
The site slopes to the north and currently, runoff from the site drains to SW Myslony overland. A public storm system exists at the frontage and with development, runoff from the site will be detained in a surface pond, treated, and discharged to this existing public system, via a new connection to an existing inlet at the south curb line of Myslony Street at the site's northern frontage.

Water Quality Treatment

Water quality treatment design conforms to current City of Tualatin and Clean Water Services (CWS) standards. The standards specify a water quality event of 0.36 inches of rainfall over four hours. Water quality treatment of the paved surfaces is provided by two Contech Stormwater Solutions water quality cartridge systems, one is a single cartridge Stormfilter catch basin treating the northern portion of the paved area and the other is a four cartridge Stormfilter treatment manhole that treats the east and southern paved areas. The remaining impervious area is the building roof and treatment for it is provided by a vegetated treatment swale located west of the building.

Impervious area for the development is approximately 98,375 square feet. Of this, 6,220 square feet is the northeast paving area.

Storm treatment calculations for the northeast paving area are as follows:
WQ Volume $=(0.36$ in $\times 6,220 \mathrm{sf}) / 12 \mathrm{in} / \mathrm{ft}=187$ cubic feet.
WQ Flow $=187$ cf $/ 14,400 \mathrm{sec}=0.0130 \mathrm{cfs}$.
Using Contech's standard treatment cartridge, at a capacity of 0.0334 cfs per cartridge, 1 cartridge is required for treatment of this area. A one cartridge Contech Stormfilter catch basin will be utilized to provide the required treatment.

Storm treatment calculations for the east and south paving areas are as follows:
WQ Volume $=(0.36$ in $\times 39,531 \mathrm{sf}) / 12 \mathrm{in} / \mathrm{ft}=1,186$ cubic feet.
WQ Flow $=1,186 \mathrm{cf} / 14,400 \mathrm{sec}=0.0824 \mathrm{cfs}$.
Using Contech's low drop treatment cartridge, at a capacity of 0.0223 cfs per cartridge, 4 cartridges are required for treatment of this area. A Contech Stormfilter treatment manhole with four cartridges will be utilized to provide the required treatment.

Storm treatment calculations for the building roof are as follows:
WQ Volume $=(0.36$ in $\times 52,624 \mathrm{sf}) / 12 \mathrm{in} / \mathrm{ft}=1,579$ cubic feet.
$W Q$ Flow $=1,579 \mathrm{cf} / 14,400 \mathrm{sec}=0.1096 \mathrm{cfs}$.

CWS requires vegetated swales to be a minimum of 2 ft . wide, and 100 ft . long, with a slope of 0.50% minimum, with a minimum swale residence time of 9 minutes. HydroCAD software was utilized to determine that a 100 ft . swale, with 0.50% slope and 4 ft . bottom width provides 12.8 minutes of residence time at a maximum depth of 0.18 ft . The swale has capacity to convey the 100 year rainfall event at a depth of 0.73 ft . and 0.28 ft . $/ \mathrm{sec}$ flow velocity, complying with CWS requirements.

See the appendix for detailed calculations and HydroCAD output.

Runoff Flow Control

As noted above, following development approximately 98,375 square feet of new impervious surface will exist.

Runoff has been modeled using HydroCAD software employing Santa Barbara Unit Hydrograph methodology. The portions of the site that are currently pervious are modeled with a runoff curve number, CN of 79. CN for the impervious areas is 98 .

Detention is provided with a surface pond at the northern portion of the development area. See the table below for specific detention information and the construction plans for pond configuration.

Control Structure Discharge	2 Year	10 Year	25 Year
Predevelopment Runoff, cfs	0.28	0.62	0.80
Post Development Runoff, cfs	1.30	1.82	2.07
Controlled Outflow, cfs	0.27	0.58	0.75
Orifice Elevation, ft.	134.75	138.07	138.07
Orifice Diameter, in.	3.00	6^{*}	${ }^{* *}$
Water Surface Elevation, ft.	138.07	138.41	138.54
Detained Volume, cf.	4,938	6,800	7,604

*"Orifice" is a notch weir, 6 inches wide.
**notched weir sized for 10 year event controls for 25 year event as well.
Runoff for pipe sizing is modeled using HydroCAD ${ }^{\text {TM }}$ software employing Santa Barbara Unit Hydrograph (SBUH) methodology. Rainfall is based on the 25 (3.90") year Type 1A storm event, per CWS R \& O 17-5, Section 5.04.2.b.2, and Drawing 1280. Pipe sizing is based on Manning's Equation with a roughness coefficient, n, of 0.013 . See attached pipe sizing spreadsheet.

As no changes to site outflow will occur because of the provided flow control, the downstream system will experience no additional flow and no modifications will occur.

Future Development

As noted above the eastern portion of the site will be left undeveloped, although the developer may demolish the two existing buildings. With the initial development of the western portion of the site, a storm pipe routed to the initially constructed storm system will be provided. The sizing of this pipe assumes that runoff flow control and treatment will be provided on the future portion of the site when development occurs. The sizing of the pipe presumes treatment will utilize Contech's low flow cartridge system and detention will occur within ADS Stormtech SC 740 chambers. See the appendix for detention sizing calculations for this future development area.

Downstream Analysis

This development site currently slopes northerly toward Myslony Street and runoff from the site currently flows overland to the public storm system in Myslony Street. At the site frontage a curb inlet collects runoff from the street and site and flow is directed north via a 10 inch diameter storm pipe to an existing public system at the north side of Myslony. The controlled site outflow is less than 5\% of the existing flow in the public main.

Appendix 1

HydroCAD Output for Detention

HydroCAD Output for Pipe Sizing
Site Conveyance Calculations
Water Quality Treatment Calculations
Basin Map
City As Built Plans

Time span $=0.00-80.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 8001$ points
Runoff by SBUH method, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1: Development Site $\quad \begin{gathered}\text { Runoff Area }=98,375 \mathrm{sf} \quad 0.00 \% \text { Impervious Runoff Depth }=0.84 \text { " }\end{gathered}$ Flow Length $=410^{\prime} \quad \mathrm{Tc}=18.3 \mathrm{~min} \mathrm{CN}=79$ Runoff $=0.28 \mathrm{cfs} 6,865 \mathrm{cf}$

Subcatchment 2: Development Site--NE Runoff Area=6,220 sf 100.00% Impervious Runoff Depth $=2.27^{\prime \prime}$ $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.08 \mathrm{cfs} 1,177 \mathrm{cf}$

Subcatchment 3: Future Site Pervious

Runoff Area $=65,025$ sf 0.00% Impervious Runoff Depth $=0.84$ " Flow Length=200' $\mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=79$ Runoff $=0.24 \mathrm{cfs} 4,538 \mathrm{cf}$

Subcatchment 4: Development Site Post Runoff Area=98,375 sf 100.00% Impervious Runoff Depth=2.27" $\mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff=1.30 cfs $18,615 \mathrm{cf}$

Subcatchment 5: Future Development Runoff Area=65,025 sf 100.00\% Impervious Runoff Depth=2.27" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.86 \mathrm{cfs} 12,305 \mathrm{cf}$

Subcatchment 9: Development Runoff Area=39,531 sf 100.00% Impervious Runoff Depth=2.27" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.52 \mathrm{cfs} 7,480 \mathrm{cf}$

Reach 6: WQ Event in Swale Avg. Flow Depth=0.18' Max Vel=0.13 fps Inflow=0.11 cfs $31,684 \mathrm{cf}$ $\mathrm{n}=0.240 \mathrm{~L}=100.0^{\prime} \mathrm{S}=0.0050 \mathrm{l} / \mathrm{Capacity=}=0.11 \mathrm{cfs} \quad$ Outflow $=0.11 \mathrm{cfs} 31,509 \mathrm{cf}$

Reach 7: 25 Year Event in Swale Avg. Flow Depth=0.68' Max Vel=0.27 fps Inflow=1.11 cfs 319,720 cf $\mathrm{n}=0.240 \mathrm{~L}=100.0$ ' $\mathrm{S}=0.0050 \mathrm{I} /$ Capacity=1.12 cfs Ouflow=1.11 cfs 318,886 cf

Reach 8: 100 Year Event in Swale Avg. Flow Depth=0.73' Max Vel=0.28 fps Inflow=1.28 cfs 368,686 cf $\mathrm{n}=0.240 \mathrm{~L}=100.0^{\prime} \mathrm{S}=0.0050$ '/' Capacity=1.29 cfs Oufflow=1.28 cfs $367,763 \mathrm{cf}$

Pond 4P: Detention Pond Peak Elev=138.07' Storage=4,938 cf Inflow=1.30 cfs $18,615 \mathrm{cf}$

Pond 5P: Future StormTech Chambers Outflow=0.27 cfs 18,615 cf

Peak Elev=142.00' Storage $=3,029 \mathrm{cf}$ Inflow=0.86 cfs $12,305 \mathrm{cf}$ Outflow=0.24 cfs 11,999 cf

Total Runoff Area $=372,551$ sf Runoff Volume $=50,980$ cf Average Runoff Depth $=1.64^{\prime \prime}$ $\mathbf{4 3 . 8 6 \%}$ Pervious $=163,400$ sf 56.14% Impervious $=209,151$ sf

Summary for Subcatchment 1: Development Site Pervious

Runoff $=0.28$ cfs @ 8.01 hrs, Volume $=\quad 6,865 \mathrm{cf}$, Depth $=0.84^{\prime \prime}$

Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, dt= 0.01 hrs
Type IA 24-hr 2 yr Rainfall $=2.50^{\prime \prime}$

Area (sf)	CN	Description				
98,375	79	Pasture/grassland/range, Fair, HSG C				
98,375		100.00% Pervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)		Description
:---						

Subcatchment 1: Development Site Pervious

Summary for Subcatchment 2: Development Site--NE Paving Area
Runoff $=\quad 0.08$ cfs @ 7.88 hrs, Volume $=1,177 \mathrm{cf}$, Depth= 2.27"

Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type IA 24-hr 2 yr Rainfall $=2.50^{\prime \prime}$

Area (sf) CN Description					
6,220		98 Paved parking, HSG C			
6,220		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

Subcatchment 2: Development Site--NE Paving Area

Summary for Subcatchment 3: Future Site Pervious
Runoff $=\quad 0.24 \mathrm{cfs} @ 8.00 \mathrm{hrs}$, Volume $=\quad 4,538 \mathrm{cf}$, Depth= $0.84^{\prime \prime}$

Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, dt= 0.01 hrs Type IA 24-hr 2 yr Rainfall=2.50"

Subcatchment 3: Future Site Pervious

Summary for Subcatchment 4: Development Site Post Development

Runoff $=\quad 1.30$ cfs @ 7.88 hrs, Volume $=\quad 18,615$ cf, Depth= 2.27"
Runoff by SBUH method, Weighted-CN, Time Span= 0.00-80.00 hrs, dt= 0.01 hrs Type IA 24-hr 2 yr Rainfall=2.50"

	rea (sf)	CN Description			
	98,375	98 P	Paved parking \& roofs		
98,375		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Subcatchment 4: Development Site Post Development
Hydrograph

Summary for Subcatchment 5: Future Development Site Post Development
Runoff $=0.86$ cfs @ 7.88 hrs , Volume $=12,305 \mathrm{cf}$, Depth= $2.27^{\prime \prime}$
Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, dt= 0.01 hrs Type IA 24-hr 2 yr Rainfall=2.50"

Area (sf) CN Description					
65,025		98 Paved parking \& roofs			
	65,025		00.00\% Im	pervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

Subcatchment 5: Future Development Site Post Development

Summary for Subcatchment 9: Development Site--East/South Paving Area
Runoff $=0.52 \mathrm{cfs} @ 7.88 \mathrm{hrs}$, Volume $=\quad 7,480 \mathrm{cf}$, Depth= 2.27"
Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type IA 24-hr 2 yr Rainfall $=2.50$ "

	rea (sf)	CN Description			
	39,531	98	aved road	w/curbs	sewers, HSG C
39,531		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 9: Development Site--East/South Paving Area
Hydrograph

Summary for Pond 4P: Detention Pond

Inflow Area $=$	98,375 sf, 100.00% Impervious,	Inflow Depth $=$	2.27 " for 2 yr event	
Inflow	$=$	$1.30 \mathrm{cfs} @$	7.88 hrs , Volume $=$	$18,615 \mathrm{cf}$
Outflow	$=$	$0.27 \mathrm{cfs} @$	10.26 hrs , Volume $=$	$18,615 \mathrm{cf}$, Atten $=79 \%$, Lag $=142.7 \mathrm{~min}$
Primary	$=$	$0.27 \mathrm{cfs} @ 10.26 \mathrm{hrs}$, Volume $=$	$18,615 \mathrm{cf}$	

Routing by Stor-Ind method, Time Span= $0.00-80.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev=138.07' @ 10.26 hrs Surf.Area= 5,325 sf Storage= 4,938 cf
Plug-Flow detention time= 209.4 min calculated for 18,615 cf (100\% of inflow)
Center-of-Mass det. time= 209.3 min (881.9-672.6)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	137.00^{\prime}	$115,500 \mathrm{cf}$	$\mathbf{2 0 . 0 0 ^ { \prime }} \mathbf{W} \times \mathbf{1 9 5 . 0 0} \mathbf{L} \times \mathbf{1 0 . 0 0}$ 'H Prismatoid $\mathbf{Z = 3 . 0}$

Device	Routing	Invert	Outlet Devices
\#1	Primary	136.75'	18.0" Round Culvert L= 100.0' $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 136.75' / 136.25' S=0.0050 '/' Cc= 0.900
			$n=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf
\#2	Device 1	134.75'	3.0" Horiz. Orifice/Grate $\quad \mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Device 1	138.07'	0.5 ' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=0.27 cfs @ 10.26 hrs HW=138.07' (Free Discharge)
\& 1=Culvert (Passes 0.27 cfs of 5.24 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.27 cfs @ 5.54 fps)
$-3=$ Sharp-Crested Rectangular Weir (Weir Controls 0.00 cfs @ 0.15 fps)

Pond 4P: Detention Pond

Hydrograph

Summary for Pond 5P: Future StormTech Chambers

Routing by Stor-Ind method, Time Span= 0.00-80.00 hrs, dt= 0.01 hrs
Peak Elev= 142.00' @ 9.20 hrs Surf.Area= 4,138 sf Storage= 3,029 cf
Plug-Flow detention time $=161.3 \mathrm{~min}$ calculated for $11,997 \mathrm{cf}(98 \%$ of inflow)
Center-of-Mass det. time $=142.5 \mathrm{~min}(815.2-672.6)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	139.75'	4,394 cf	$6.25^{\prime} \mathrm{W} \times 195.86^{\prime} \mathrm{L} \times 3.50^{\prime} \mathrm{H}$ Field $\mathrm{A} \mathrm{Z}=3.0$ 12,226 cf Overall $-1,240$ cf Embedded $=10,986$ cf $\times 40.0 \%$ Voids
\#2A	$140.25{ }^{\prime}$	1,240 cf	ADS_StormTech SC-740 +Cap x 27 Inside \#1 Effective Size $=44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$ Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44^{\prime} ' Overlap
		5,635 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	$140.25{ }^{\prime}$	12.0" Round Culvert L= 10.0' $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert $=140.25^{\prime} / 139.75 ' S=0.05001 / / \quad C c=0.900$
\#2	Device 1	$138.25{ }^{\prime}$	2.6" Horiz. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Device 1	142.00^{\prime}	4.1" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$

Primary OutFlow Max=0.24 cfs @ 9.20 hrs HW=142.00' (Free Discharge)
L1=Culvert (Passes 0.24 cfs of 4.23 cfs potential flow)
个-2=Orifice/Grate (Orifice Controls 0.23 cfs @ 6.37 fps)
—3=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.16 fps)

Pond 5P: Future StormTech Chambers - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)
Effective Size $=44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44^{\prime} Overlap
27 Chambers/Row $\times 7.12^{\prime}$ Long +0.81' Cap Length $\times 2=193.86^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 195.86' Base Length

1 Rows x51.0" Wide $+12.0^{\prime \prime}$ Side Stone x $2=6.25^{\prime}$ Base Width
6.0" Base $+30.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.50^{\prime}$ Field Height
3.0 '/' Side-Z x Height = 126.0" Flare/Side

Base Length + Flare $\times 2=216.86^{\prime}$ Top Length
Base Width + Flare $\times 2=27.25^{\prime}$ Top Width
27 Chambers $\times 45.9$ cf $=1,240.4$ cf Chamber Storage
$12,226.3$ cf Field $-1,240.4$ cf Chambers $=10,985.9$ cf Stone $\times 40.0 \%$ Voids $=4,394.4$ cf Stone Storage
Chamber Storage + Stone Storage $=5,634.7 \mathrm{cf}=0.129$ af
Overall Storage Efficiency $=46.1 \%$
Overall System Size $=195.86^{\prime} \times 6.25^{\prime} \times 3.50^{\prime}$
27 Chambers
452.8 cy Field
406.9 cy Stone

Pond 5P: Future StormTech Chambers
Hydrograph

Time span $=0.00-80.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 8001$ points Runoff by SBUH method, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1: Development Site

Runoff Area $=98,375$ sf 0.00% Impervious Runoff Depth $=1.53^{\prime \prime}$ Flow Length=410' $\quad \mathrm{c}=18.3 \mathrm{~min} \quad \mathrm{CN}=79$ Runoff $=0.62 \mathrm{cfs} 12,520 \mathrm{cf}$
Subcatchment 2: Development Site--NE Runoff Area=6,220 sf $\quad 100.00 \%$ Impervious Runoff Depth $=3.22$ "
Tc $=5.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff $=0.12 \mathrm{cfs} 1,667 \mathrm{cf}$

Subcatchment 3: Future Site Pervious
Runoff Area=65,025 sf 0.00% Impervious Runoff Depth=1.53" Flow Length=200' Tc=5.0 min CN=79 Runoff $=0.51 \mathrm{cfs} 8,276 \mathrm{cf}$

Subcatchment 4: Development Site Post Runoff Area=98,375 sf 100.00\% Impervious Runoff Depth=3.22" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=1.82 cfs $26,370 \mathrm{cf}$

Subcatchment 5: Future Development Runoff Area=65,025 sf 100.00\% Impervious Runoff Depth=3.22" $\mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff=1.21 cfs $17,430 \mathrm{cf}$

Subcatchment 9: Development

Runoff Area=39,531 sf 100.00% Impervious Runoff Depth=3.22" $\mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff $=0.73 \mathrm{cfs} 10,596 \mathrm{cf}$

Reach 6: WQ Event in Swale Avg. Flow Depth=0.18' Max Vel=0.13 fps Inflow=0.11 cfs 31,684 cf $\mathrm{n}=0.240 \mathrm{~L}=100.0$ ' $\mathrm{S}=0.0050$ '/' Capacity=0.11 cfs Outflow=0.11 cfs 31,509 cf

Reach 7: 25 Year Event in Swale Avg. Flow Depth=0.68' Max Vel=0.27 fps Inflow=1.11 cfs 319,720 cf $\mathrm{n}=0.240 \mathrm{~L}=100.0$ ' $\mathrm{S}=0.0050$ '/' Capacity=1.12 cfs Outflow=1.11 cfs 318,886 of

Reach 8: 100 Year Event in Swale Avg. Flow Depth=0.73' Max Vel=0.28 fps Inflow=1.28 cfs 368,686 cf $\mathrm{n}=0.240 \mathrm{~L}=100.0 \mathrm{~S}=0.0050 \mathrm{l} / \mathrm{l}$ Capacity=1.29 cfs Outflow=1.28 cfs $367,763 \mathrm{cf}$

Pond 4P: Detention Pond Peak Elev=138.41' Storage=6,800 cf Inflow=1.82 cfs 26,370 cf Outflow $=0.58 \mathrm{cfs} 26,370 \mathrm{cf}$

Pond 5P: Future StormTech Chambers
Peak Elev=142.48' Storage=3,972 cf Inflow=1.21 cfs $17,430 \mathrm{cf}$ Outflow=0.51 cfs $17,124 \mathrm{cf}$

Total Runoff Area $=\mathbf{3 7 2 , 5 5 1}$ sf Runoff Volume $=\mathbf{7 6}, 859$ cf Average Runoff Depth $=2.48$ " 43.86% Pervious $=163,400$ sf 56.14% Impervious $=209,151$ sf

Summary for Subcatchment 1: Development Site Pervious

Runoff $=0.62 \mathrm{cfs} @ 8.01$ hrs, Volume $=12,520 \mathrm{cf}$, Depth= $1.53^{\prime \prime}$

Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type IA 24-hr 10 yr Rainfall $=3.45^{\prime \prime}$

	rea (sf)	CN	Description		
	98,375	79	Pasture/gra	ssland/ran	e, Fair, HSG C
$98,375$		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
11.9	100	0.0125	0.14		Sheet Flow, Range $n=0.130 \quad \mathrm{P} 2=2.50^{\prime \prime}$
6.4	310	0.0133	0.81		Shallow Concentrated Flow, Short Grass Pasture $K v=7.0 \mathrm{fps}$

Subcatchment 1: Development Site Pervious

Hydrograph

Summary for Subcatchment 2: Development Site--NE Paving Area
Runoff $=\quad 0.12 \mathrm{cfs} @ 7.88 \mathrm{hrs}$, Volume $=\quad 1,667 \mathrm{cf}$, Depth= 3.22"

Runoff by SBUH method, Weighted-CN, Time Span $=0.00-80.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type IA 24-hr 10 yr Rainfall=3.45"

Subcatchment 2: Development Site--NE Paving Area
Hydrograph

Runoff

Summary for Subcatchment 3: Future Site Pervious
Runoff $=0.51 \mathrm{cfs} @ 7.99 \mathrm{hrs}$, Volume $=\quad 8,276 \mathrm{cf}$, Depth= $1.53^{\prime \prime}$

Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type IA 24-hr 10 yr Rainfall=3.45"

Subcatchment 3: Future Site Pervious

Summary for Subcatchment 4: Development Site Post Development
Runoff $=1.82$ cfs @ 7.88 hrs, Volume $=\quad 26,370 \mathrm{cf}$, Depth= $3.22^{\prime \prime}$

Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type IA 24-hr 10 yr Rainfall=3.45"

	rea (sf)	CN Description			
	$98,375$	98 P	aved park	ng \& roofs	
$98,375$		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 4: Development Site Post Development Hydrograph

Summary for Subcatchment 5: Future Development Site Post Development

Runoff $=1.21$ cfs @ 7.88 hrs, Volume $=17,430 \mathrm{cf}$, Depth= 3.22"

Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type IA 24-hr 10 yr Rainfall $=3.45{ }^{\prime \prime}$

	Area (sf)	CN Description			
65,025		98 Paved parking \& roofs			
65,025		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 5: Future Development Site Post Development Hydrograph

Summary for Subcatchment 9: Development Site--East/South Paving Area
Runoff $=\quad 0.73 \mathrm{cfs} @ 7.88 \mathrm{hrs}$, Volume $=\quad 10,596 \mathrm{cf}$, Depth= $3.22{ }^{\prime \prime}$
Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, dt= 0.01 hrs
Type IA 24-hr 10 yr Rainfall $=3.45^{\prime \prime}$

Subcatchment 9: Development Site--East/South Paving Area

Summary for Pond 4P: Detention Pond

Inflow Area		$98,375 \mathrm{sf}, 100.00 \%$		Impervious,
Inflow	$=$	$1.82 \mathrm{cfs} @$	7.88 hrs, Volume $=$	$26,370 \mathrm{cf}$
Outflow	$=$	$0.58 \mathrm{cfs} @$	8.94 hrs , Volume $=$	$26,370 \mathrm{cf}$, Atten $=68 \%$, Lag $=63.6 \mathrm{~min}$
Primary	$=$	$0.58 \mathrm{cfs} @$	8.94 hrs , Volume $=$	$26,370 \mathrm{cf}$

Routing by Stor-Ind method, Time Span= $0.00-80.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=138.41' @ 8.94 hrs Surf.Area= 5,787 sf Storage $=6,800$ cf
Plug-Flow detention time $=222.2 \mathrm{~min}$ calculated for 26,370 cf (100% of inflow)
Center-of-Mass det. time= 222.2 min (885.4-663.2)

Primary OutFlow Max=0.58 cfs @ 8.94 hrs HW=138.41' (Free Discharge)
4-1=Culvert (Passes 0.58 cfs of 7.05 cfs potential flow)

- 2=Orifice/Grate (Orifice Controls 0.30 cfs @ 6.20 fps)
— $3=$ Sharp-Crested Rectangular Weir (Weir Controls 0.28 cfs @ 1.90 fps)

Pond 4P: Detention Pond

Summary for Pond 5P: Future StormTech Chambers

Inflow Area =	65,025	.00\% Impervious,	Inflow Depth = 3.22" for 10 yr event
Inflow	1.21 cfs @	7.88 hrs , Volume=	17,430 cf
Outflow	0.51 cfs @	8.40 hrs , Volume=	$17,124 \mathrm{cf}$, Atten= 58\%, Lag= 31.3 mi
Primary	0.51 cfs @	8.40 hrs , Volume=	17,124 cf

Routing by Stor-Ind method, Time Span= $0.00-80.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 142.48' @ 8.40 hrs Surf.Area= 4,801 sf Storage $=3,972$ cf
Plug-Flow detention time $=163.3 \mathrm{~min}$ calculated for 17,124 cf (98% of inflow)
Center-of-Mass det. time $=149.7 \mathrm{~min}(812.9-663.2)$

Primary OutFlow Max=0.51 cfs @ 8.40 hrs HW=142.48' (Free Discharge)
L- $_{1}=$ Culvert (Passes 0.51 cfs of 4.97 cfs potential flow)
——2=Orifice/Grate (Orifice Controls 0.27 cfs @ 7.19 fps)
3=Orifice/Grate (Orifice Controls 0.24 cfs @ 2.67 fps)

Pond 5P: Future StormTech Chambers - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)
Effective Size $=44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44^{\prime} Overlap
27 Chambers/Row $\times 7.12^{\prime}$ Long +0.81' Cap Length $\times 2=193.86^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 195.86' Base Length

1 Rows x 51.0" Wide + 12.0" Side Stone x 2 = 6.25' Base Width
6.0" Base $+30.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.50^{\prime}$ Field Height
3.0 '/' Side-Z x Height = 126.0" Flare/Side

Base Length + Flare $\times 2=216.86$ ' Top Length
Base Width + Flare $\times 2=27.25^{\prime}$ Top Width
27 Chambers $\times 45.9$ cf $=1,240.4$ cf Chamber Storage
$12,226.3$ cf Field $-1,240.4$ cf Chambers $=10,985.9$ cf Stone $\times 40.0 \%$ Voids $=4,394.4$ cf Stone Storage
Chamber Storage + Stone Storage $=5,634.7 \mathrm{cf}=0.129$ af
Overall Storage Efficiency $=46.1 \%$
Overall System Size $=195.86^{\prime} \times 6.25^{\prime} \times 3.50^{\prime}$
27 Chambers
452.8 cy Field
406.9 cy Stone

Pond 5P: Future StormTech Chambers

Time span $=0.00-80.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 8001$ points
Runoff by SBUH method, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1: Development Site Runoff Area=98,375 sf 0.00\% Impervious Runoff Depth=1.88"

Subcatchment 2: Development Site--NE Runoff Area=6,220 sf 100.00\% Impervious Runoff Depth=3.67" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.13 \mathrm{cfs} 1,900 \mathrm{cf}$

Subcatchment 3: Future Site Pervious
Runoff Area $=65,025$ sf 0.00% Impervious Runoff Depth $=1.88^{\prime \prime}$ Flow Length $=200^{\prime}$ Tc $=5.0 \mathrm{~min} \mathrm{CN}=79$ Runoff $=0.65 \mathrm{cfs} 10,201 \mathrm{cf}$

Subcatchment 4: Development Site Post Runoff Area=98,375 sf 100.00% Impervious Runoff Depth $=3.67$ " Tc=5.0 min CN=98 Runoff=2.07 cfs $30,048 \mathrm{cf}$

Subcatchment 5: Future Development

Subcatchment 9: Development Runoff Area=39,531 sf 100.00\% Impervious Runoff Depth $=3.67$ " $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.83 \mathrm{cfs} 12,075 \mathrm{cf}$

Reach 6: WQ Event in Swale Avg. Flow Depth $=0.18^{\prime}$ Max Vel=0.13 fps Inflow=0.11 cfs $31,684 \mathrm{cf}$ $\mathrm{n}=0.240 \mathrm{~L}=100.0^{\prime} \mathrm{S}=0.0050 \mathrm{l} / \mathrm{l}$ Capacity=$=0.11 \mathrm{cfs}$ Outflow=0.11 cfs $31,509 \mathrm{cf}$

Reach 7: 25 Year Event in Swale Avg. Flow Depth=0.68' Max Vel=0.27 fps Inflow=1.11 cfs 319,720 cf $\mathrm{n}=0.240 \mathrm{~L}=100.0^{\prime} \mathrm{S}=0.0050 \mathrm{I} / \mathrm{Capacity=1.12cfs} \mathrm{Oufflow=1.11} \mathrm{cfs} \mathrm{318,886} \mathrm{cf}$

Reach 8: 100 Year Event in Swale Avg. Flow Depth=0.73' Max Vel=0.28 fps Inflow=1.28 cfs 368,686 cf

Pond 4P: Detention Pond

Pond 5P: Future StormTech Chambers
Peak Elev=138.54' Storage=7,604 cf Inflow=2.07 cfs $30,048 \mathrm{cf}$ Outflow $=0.75 \mathrm{cfs} 30,048 \mathrm{cf}$

Peak Elev=142.72' Storage=4,474 cf Inflow=1.37 cfs 19,862 cf Outflow $=0.61$ cfs 19,556 cf

Total Runoff Area $=\mathbf{3 7 2 , 5 5 1}$ sf Runoff Volume $=89,519$ cf Average Runoff Depth $=2.88^{\prime \prime}$
43.86% Pervious $=163,400$ sf 56.14% Impervious $=209,151 \mathrm{sf}$

Summary for Subcatchment 1: Development Site Pervious

Runoff $=0.80 \mathrm{cfs} @ 8.01 \mathrm{hrs}$, Volume $=15,434 \mathrm{cf}$, Depth= $1.88^{\prime \prime}$

Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, dt= 0.01 hrs Type IA 24-hr 25 yr Rainfall=3.90"

Area (sf)	CN	Description				
98,375	79	Pasture/grassland/range, Fair, HSG C				
98,375		100.00% Pervious Area				
Tc	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)		Description
:---						

$18.3 \quad 410$ Total

Subcatchment 1: Development Site Pervious

Hydrograph

Summary for Subcatchment 2: Development Site--NE Paving Area
Runoff $=0.13 \mathrm{cfs} @ 7.88 \mathrm{hrs}$, Volume $=1,900 \mathrm{cf}$, Depth= 3.67"
Runoff by SBUH method, Weighted-CN, Time Span= 0.00-80.00 hrs, dt= 0.01 hrs
Type IA 24-hr 25 yr Rainfall $=3.90^{\prime \prime}$

Subcatchment 2: Development Site--NE Paving Area
Hydrograph

Runoff

Summary for Subcatchment 3: Future Site Pervious
Runoff $=0.65 \mathrm{cfs} @ 7.98 \mathrm{hrs}$, Volume $=10,201 \mathrm{cf}$, Depth= $1.88^{\prime \prime}$
Runoff by SBUH method, Weighted-CN, Time Span $=0.00-80.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type IA 24-hr 25 yr Rainfall=3.90"

Subcatchment 3: Future Site Pervious

Summary for Subcatchment 4: Development Site Post Development
Runoff $=\quad 2.07 \mathrm{cfs} @ 7.88 \mathrm{hrs}$, Volume $=\quad 30,048 \mathrm{cf}$, Depth= 3.67"

Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type IA 24-hr 25 yr Rainfall=3.90"

Area (sf)	CN	Description
98,375	98	Paved parking \& roofs
98,375		100.00% Impervious Area
Tc Length (min) Slope (feet) Velocity (ft/ft) Capacity (ft/sec) (cfs)		

5.0 Direct Entry,

Subcatchment 4: Development Site Post Development
Hydrograph

Summary for Subcatchment 5: Future Development Site Post Development

Runoff $=1.37$ cfs @ 7.88 hrs, Volume $=\quad 19,862$ cf, Depth= 3.67"

Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type IA 24-hr 25 yr Rainfall=3.90"

	rea (sf)	CN Description			
65,025		98 Paved parking \& roofs			
65,025		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 5: Future Development Site Post Development Hydrograph

Summary for Subcatchment 9: Development Site--East/South Paving Area

Runoff
0.83 cfs @
7.88 hrs, Volume=

12,075 cf, Depth= 3.67"
Runoff by SBUH method, Weighted-CN, Time Span= $0.00-80.00 \mathrm{hrs}$, dt= 0.01 hrs
Type IA 24-hr 25 yr Rainfall=3.90"

	rea (sf)	CN Description				
	39,531	98 Paved roads w/curbs \& sewers, HSG C				
39,531		100.00\% Impervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.0					Direct Entry,	

Subcatchment 9: Development Site--East/South Paving Area

Hydrograph

Summary for Pond 4P: Detention Pond

Routing by Stor-Ind method, Time Span= 0.00-80.00 hrs, dt= 0.01 hrs
Peak Elev=138.54' @ 8.72 hrs Surf.Area= 5,978 sf Storage= 7,604 cf
Plug-Flow detention time $=218.2$ min calculated for 30,048 cf (100% of inflow)
Center-of-Mass det. time $=218.2 \mathrm{~min}$ (878.3-660.1)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	137.00^{\prime}	$115,500 \mathrm{cf}$	$\mathbf{2 0 . 0 0} \mathbf{W} \times 195.00^{\prime} \mathrm{L} \times 10.00^{\prime} \mathrm{H}$ Prismatoid $\mathrm{Z}=\mathbf{3 . 0}$

Device	Routing	Invert	Outlet Devices
\#1	Primary	136.75'	18.0" Round Culvert L= 100.0' $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 136.75'/136.25'S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf
\#2	Device 1	134.75'	3.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Device 1	138.07^{\prime}	0.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=0.75 cfs @ 8.72 hrs HW=138.54' (Free Discharge)
$\psi_{1}=$ Culvert (Passes 0.75 cfs of 7.61 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.32 cfs @ 6.45 fps)
$-3=$ Sharp-Crested Rectangular Weir (Weir Controls 0.43 cfs @ 2.25 fps)

Pond 4P: Detention Pond

Inflow
Primary

Summary for Pond 5P: Future StormTech Chambers

Inflow Area $=$	$65,025 \mathrm{sf}, 100.00 \%$	Impervious,	Inflow Depth $=3.67^{\prime \prime}$	for 25 yr event
Inflow	$=$	$1.37 \mathrm{cfs} @$	7.88 hrs , Volume $=$	$19,862 \mathrm{cf}$
Outflow	$=$	$0.61 \mathrm{cfs} @$	8.36 hrs , Volume $=$	$19,556 \mathrm{cf}$, Atten $=56 \%$, Lag $=29.2 \mathrm{~min}$
Primary	$=$	$0.61 \mathrm{cfs} @$	8.36 hrs , Volume $=$	$19,556 \mathrm{cf}$

Routing by Stor-Ind method, Time Span= $0.00-80.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 142.72' @ 8.36 hrs Surf.Area= 5,150 sf Storage= 4,474 cf
Plug-Flow detention time $=162.5 \mathrm{~min}$ calculated for 19,553 of (98% of inflow)
Center-of-Mass det. time $=150.6 \mathrm{~min}(810.8-660.1)$

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	$140.25{ }^{\prime}$	12.0" Round Culvert L= 10.0' $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert=140.25' $139.75^{\prime} \quad \mathrm{S}=0.0500 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.013$ Flow Area $=0.79 \mathrm{sf}$
\#2	Device 1	$138.25{ }^{\prime}$	2.6" Horiz. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Device 1	$142.0{ }^{\prime}$	4.1" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$

Primary OutFlow Max=0.61 cfs @ 8.36 hrs HW=142.72' (Free Discharge)
Q-1=Culvert (Passes 0.61 cfs of 5.31 cfs potential flow)
——2=Orifice/Grate (Orifice Controls 0.28 cfs @ 7.57 fps)

Pond 5P: Future StormTech Chambers - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)
Effective Size $=44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44^{\prime} Overlap
27 Chambers/Row $\times 7.1^{\prime}$ Long $+0.81^{\prime}$ Cap Length $\times 2=193.86^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=$ 195.86' Base Length

1 Rows x 51.0" Wide + 12.0" Side Stone x $2=6.25^{\prime}$ Base Width
6.0" Base $+30.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.50^{\prime}$ Field Height
3.0 '/' Side-Z x Height = 126.0" Flare/Side

Base Length + Flare $\times 2=216.86$ ' Top Length
Base Width + Flare $\times 2=27.25^{\prime}$ Top Width
27 Chambers $\times 45.9$ cf $=1,240.4$ cf Chamber Storage
12,226.3 cf Field $-1,240.4$ cf Chambers $=10,985.9$ cf Stone $\times 40.0 \%$ Voids $=4,394.4$ cf Stone Storage
Chamber Storage + Stone Storage $=5,634.7 \mathrm{cf}=0.129$ af
Overall Storage Efficiency $=46.1 \%$
Overall System Size $=195.86^{\prime} \times 6.25^{\prime} \times 3.50^{\prime}$
27 Chambers
452.8 cy Field
406.9 cy Stone

Pond 5P: Future StormTech Chambers

Summary for Reach 6: WQ Event in Swale

Inflow $=$	$0.11 \mathrm{cfs} @$	0.00 hrs, Volume $=$
Outflow $=$	$31,684 \mathrm{cf}$, Incl. 0.11 cfs Base Flow	
a	$0.11 \mathrm{cfs} @$	5.31 hrs, Volume $=$

Routing by Stor-Ind+Trans method, Time Span $=0.00-80.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=0.13 \mathrm{fps}$, Min. Travel Time $=13.1 \mathrm{~min}$
Avg. Velocity $=0.13 \mathrm{fps}$, Avg. Travel Time $=13.1 \mathrm{~min}$
Peak Storage= 86 cf @ 5.09 hrs
Average Depth at Peak Storage $=0.18^{\prime}$
Bank-Full Depth= 0.18^{\prime} Flow Area= 0.8 sf, Capacity $=0.11$ cfs
$4.00^{\prime} \times 0.18^{\prime}$ deep channel, $n=0.240$
Side Slope Z-value= $4.0^{\prime} / /{ }^{\prime}$ Top Width= 5.44'
Length $=100.0^{\prime}$ Slope $=0.0050 \mathrm{l} /$
Inlet Invert= 248.00', Outlet Invert= 247.50'

Reach 6: WQ Event in Swale
Hydrograph

Summary for Reach 7: 25 Year Event in Swale

In	$=$	@	0.00 hrs , Volume=	319,720 cf, Incl. 1.11 cfs Base Flow
Uutfow		1.11 cfs @	2.65 hrs , Volume=	$318,886 \mathrm{cf}$, Atten= 0\%, Lag= 159.0 m

Routing by Stor-Ind+Trans method, Time Span= $0.00-80.00 \mathrm{hrs}$, dt= 0.01 hrs
Max. Velocity $=0.27 \mathrm{fps}, \mathrm{Min}$. Travel Time $=6.1 \mathrm{~min}$
Avg. Velocity $=0.27 \mathrm{fps}$, Avg. Travel Time $=6.1 \mathrm{~min}$
Peak Storage= 407 cf @ 2.55 hrs
Average Depth at Peak Storage $=0.68^{\prime}$
Bank-Full Depth= 0.68 ' Flow Area= 4.1 sf, Capacity= 1.12 cfs
$4.00^{\prime} \times 0.68^{\prime}$ deep channel, $n=0.240$
Side Slope Z-value= 3.0 '/' Top Width= 8.08'
Length $=100.0^{\prime}$ Slope $=0.0050^{\prime} /$
Inlet Invert=248.00', Outlet Invert=247.50'

Reach 7: 25 Year Event in Swale
Hydrograph

Summary for Reach 8: 100 Year Event in Swale

In		1.28 cfs @	0.00 hrs , Volume=	368,686 cf, Incl. 1.28 cfs Base Flow
Outflow	=	1.28 cfs @	2.60 hrs , Volume=	367,763 cf, Atten=0\%, Lag= 156.0

Routing by Stor-Ind+Trans method, Time Span= $0.00-80.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=0.28 \mathrm{fps}, \mathrm{Min}$. Travel Time $=5.9 \mathrm{~min}$
Avg. Velocity $=0.28 \mathrm{fps}$, Avg. Travel Time $=5.9 \mathrm{~min}$
Peak Storage= 450 cf @ 2.49 hrs
Average Depth at Peak Storage $=0.73^{\prime}$
Bank-Full Depth= 0.73^{\prime} Flow Area= 4.5 sf, Capacity= 1.29 cfs
$4.00^{\prime} \times 0.73^{\prime}$ deep channel, $\mathrm{n}=0.240$
Side Slope Z-value= $3.0^{\prime} / /$ Top Width= 8.38^{\prime}
Length $=100.0$ ' Slope $=0.0050 \mathrm{l} /$
Inlet Invert=248.00', Outlet Invert=247.50'

Reach 8: 100 Year Event in Swale
Hydrograph

Area A

Area J

Area B

Area K

Area C

Area L

Area D

Area M

Area E to I

Area N

Time span=0.10-80.00 hrs, dt=0.01 hrs, 7991 points
Runoff by SBUH method, Split Pervious/Imperv.
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment A: Area A

Subcatchment B: Area B

Subcatchment C: Area C

Subcatchment D: Area D

Subcatchment E: Area E to I

Subcatchment J: Area J

Subcatchment K: Area K

Subcatchment L: Area L

Subcatchment M: Area M

Subcatchment N : Area N

Runoff Area $=6,844$ sf 100.00% Impervious Runoff Depth=3.67" Flow Length $=200^{\prime} \quad \mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=0 / 98 \quad$ Runoff $=0.14 \mathrm{cfs} 0.048$ af

Runoff Area $=3,087$ sf 100.00% Impervious Runoff Depth $=3.67^{\prime \prime}$ Flow Length $=200^{\prime} \quad \mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=0 / 98$ Runoff $=0.06 \mathrm{cfs} 0.022$ af

Runoff Area $=13,700$ sf 100.00% Impervious Runoff Depth $=3.67^{\prime \prime}$ Flow Length=200' Tc=5.0 min CN=0/98 Runoff=0.29 cfs 0.096 af

Runoff Area=8,900 sf 100.00\% Impervious Runoff Depth=3.67" Flow Length=200' Tc=10.0 min CN=0/98 Runoff=0.18 cfs 0.062 af

Runoff Area $=1,400$ sf 100.00% Impervious Runoff Depth=3.67" Flow Length $=200^{\prime} \quad \mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=0 / 98$ Runoff $=0.03 \mathrm{cfs} 0.010 \mathrm{af}$

Runoff Area $=9,568$ sf 100.00% Impervious Runoff Depth $=3.67^{\prime \prime}$ Flow Length $=200^{\prime}$ Tc $=15.0 \mathrm{~min} \mathrm{CN}=0 / 98$ Runoff $=0.18 \mathrm{cfs} 0.067$ af

Runoff Area=22,080 sf 100.00% Impervious Runoff Depth=3.67" Flow Length $=200^{\prime} \quad \mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=0 / 98$ Runoff $=0.46 \mathrm{cfs} 0.155$ af

Runoff Area=20,976 sf 100.00% Impervious Runoff Depth=3.67" Flow Length=200' Tc=5.0 min CN=0/98 Runoff=0.44 cfs 0.147 af

Runoff Area $=6,220$ sf 100.00% Impervious Runoff Depth=3.67" Flow Length=200' Tc=5.0 min CN=0/98 Runoff=0.13 cfs 0.044 af

Runoff Area=65,025 sf 100.00% Impervious Runoff Depth $=3.67^{\prime \prime}$ Flow Length $=200^{\prime} \quad \mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=0 / 98$ Runoff $=1.37 \mathrm{cfs} 0.456$ af

Total Runoff Area $=3.623$ ac Runoff Volume $=1.107$ af Average Runoff Depth $=3.67^{\prime \prime}$
0.00% Pervious $=0.000$ ac 100.00% Impervious $=3.623$ ac

Summary for Subcatchment A: Area A

Runoff $=0.14 \mathrm{cfs} @ 7.88 \mathrm{hrs}$, Volume $=0.048 \mathrm{af}$, Depth= 3.67"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= $0.10-80.00 \mathrm{hrs}$, dt= 0.01 hrs Type IA 24-hr 25 Year Rainfall=3.90"

Subcatchment A: Area A
Hydrograph

Summary for Subcatchment B: Area B

Runoff $=0.06$ cfs @ 7.88 hrs, Volume= 0.022 af, Depth= 3.67"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= $0.10-80.00 \mathrm{hrs}$, dt= 0.01 hrs Type IA 24-hr 25 Year Rainfall $=3.90^{\prime \prime}$

Subcatchment B: Area B

Summary for Subcatchment C: Area C

Runoff $=0.29 \mathrm{cfs} @ 7.88 \mathrm{hrs}$, Volume $=0.096 \mathrm{af}$, Depth= $3.67^{\prime \prime}$

Runoff by SBUH method, Split Pervious/lmperv., Time Span= $0.10-80.00 \mathrm{hrs}$, dt= 0.01 hrs Type IA 24-hr 25 Year Rainfall=3.90"

Subcatchment C: Area C

Summary for Subcatchment D: Area D

Runoff $=0.18 \mathrm{cfs} @ 7.96$ hrs, Volume $=0.062$ af, Depth= 3.67"

Runoff by SBUH method, Split Pervious/lmperv., Time Span= $0.10-80.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type IA 24-hr 25 Year Rainfall $=3.90^{\prime \prime}$

Subcatchment D: Area D

Summary for Subcatchment E: Area E to I

Runoff $=0.03 \mathrm{cfs} @ 7.88 \mathrm{hrs}$, Volume $=0.010 \mathrm{af}$, Depth= $3.67^{\prime \prime}$

Runoff by SBUH method, Split Pervious/Imperv., Time Span= $0.10-80.00 \mathrm{hrs}$, dt= 0.01 hrs Type IA 24-hr 25 Year Rainfall $=3.90^{\prime \prime}$

Subcatchment E: Area E to I

Summary for Subcatchment J: Area J

Runoff $=0.18 \mathrm{cfs} @ 8.00 \mathrm{hrs}$, Volume= $\quad 0.067$ af, Depth= 3.67"

Runoff by SBUH method, Split Pervious/lmperv., Time Span= $0,10-80.00 \mathrm{hrs}$, dt= 0.01 hrs Type IA 24-hr 25 Year Rainfall $=3.90^{\prime \prime}$

Subcatchment J: Area J

Hydrograph

Summary for Subcatchment K: Area K

Runoff $=0.46$ cfs @ 7.88 hrs, Volume $=0.155$ af, Depth= $3.67^{\prime \prime}$

Runoff by SBUH method, Split Pervious/Imperv., Time Span= $0.10-80.00 \mathrm{hrs}$, dt= 0.01 hrs Type IA 24-hr 25 Year Rainfall=3.90"

Subcatchment K: Area K

Summary for Subcatchment L: Area L

Runoff =
0.44 cfs @
7.88 hrs , Volume=
0.147 af, Depth= 3.67"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= $0.10-80.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type IA 24-hr 25 Year Rainfall $=3.90^{\prime \prime}$

Subcatchment L: Area L

Summary for Subcatchment M: Area M

Runoff $=0.13 \mathrm{cfs} @ 7.88 \mathrm{hrs}$, Volume= $\quad 0.044$ af, Depth= 3.67"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.10-80.00 hrs, dt= 0.01 hrs Type IA 24-hr 25 Year Rainfall=3.90"

Area (sf)	CN	Description
6,220	98	Paved parking, HSG C
6,220	100.00% Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, Sheet Flow |
| :--- |

Subcatchment M: Area M

Hydrograph

Summary for Subcatchment N: Area N

Runoff $=\quad 1.37$ cfs @ 7.88 hrs , Volume= 0.456 af, Depth= 3.67"
Runoff by SBUH method, Split Pervious/Imperv., Time Span=0.10-80.00 hrs, dt=0.01 hrs Type IA 24-hr 25 Year Rainfall=3.90"

Area (sf) CN Description				
65,025	98 Paved parking, HSG C			
65,025	100.00\% Impervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0200		0.67		Direct Entry

Hydrograph

TM Rippey Consulting Engineers
STORM SEWER DESIGN FORM Project Number: 18206
Four S Building
June 13,2018

7650 SW Beveland Street Suite 100
Tigard, Oregon 97223

Phone: 5034433900
Fax: 5034433700
kkoroch@tmrippey.com

July 25, 2018

Four S Development
Project Number: 18206

Storm Water Quality Treatment Sizing
East and South Paved Areas
Contech Stormfilter Cartridge Manhole

Impervious Area
 $$
39,531 \mathrm{ft}^{2}
$$

Water Quality
Volume

$$
\begin{aligned}
& \text { WQV(cf) }=0.36 \text { in. } \quad \mathrm{X} \quad 39,531 \quad \mathrm{ft}^{2} \\
& =1,186 \quad \text { cf }
\end{aligned}
$$

Water Quality Flow

$$
\begin{aligned}
\mathrm{WQF}(\mathrm{cfs}) & =\frac{1,186 \mathrm{cf}}{14,400 \mathrm{sec}} \\
& =\mathbf{0 . 0 8 2 4} \quad \mathbf{c f s}
\end{aligned}
$$

Northeast Paved Areas
Contech Stormfilter Cartridge Catch Basin

Impervious Area	6,220	ft^{2}				
Water Quality						
		$=$	186.60	12	$\begin{aligned} & (\mathrm{in} / \mathrm{ft}) \\ & \text { cf } \end{aligned}$	
Water Quality Flow	WQF(cfs)	$=$	186.60	cf		
		$=$	$\begin{aligned} & 14,400 \\ & \mathbf{0 . 0 1 3 0} \end{aligned}$	sec	cfs	
Cartridge Flow Rate			0.0334		cfs	(15 gpm)
Cartridges Required			0.3880			
			cartridge			

Building Roof
Vegetated Treatment Swale

Impervious Area $\quad 52,624 \mathrm{ft}^{2}$

Water Quality
Volume

$$
\begin{aligned}
& \mathrm{WQV}(\mathrm{cf})=\begin{array}{lllll}
0.36 & \text { in. } \quad \mathrm{X} & 52,624 & \mathrm{ft}^{2}
\end{array} \\
& 12 \text { (in/ft) } \\
& =1,578.72 \quad \text { cf }
\end{aligned}
$$

Water Quality Flow $\mathrm{WQF}(\mathrm{cfs})=\frac{1,578.72 \mathrm{cf}}{14,400 \mathrm{sec}}$
$=0.1096 \quad$ cfs

Four S Development Site
Project Number: 18206
July 25, 2018
Page 3
Swale sizing based HydroCAD output using 0.11 cfs flow, 4 ft . bottom width, $4 \mathrm{~h}: 1 \mathrm{v}$ side slopes, 100 ft . swale length and 0.50% swale slope.

Velocity	$=$	0.13	fps	
Travel Time	$=$	Length	\div	Velocity
	$=$	100	\div	0.13
	$=$	769	\sec	
	$=$	12.8	\min	OK

From HydroCAD, WQ flow depth is 0.18 ft . For 25 year rainfall event, flow is 1.11 cfs with 0.68 ft . flow depth and 0.27 fps velocity. For 100 year rainfall event, flow is 1.28 cfs with 0.73 ft . flow depth and 0.28 fps velocity. This complies with CWS standards. Minimum swale freeboard required is 1.73 ft .

Appendix 2

Construction Plans

	STIV130 フOYINOつ LNヨWIGヨS 8 NOISOY		

Appendix 3

Operation and Maintenance

Stormwater Facility Maintenance and Operation Plan

Four S Properties Building

August 2018
Project Owner: Four S Properties
Facility Address: SW Myslony Street
Tualatin, Oregon
Jurisdiction: City of Tualatin
Case Files:
Civil Engineer: TM Rippey Consulting Engineers
Karl Koroch, PE
7650 SW Beveland Street
Suite 100
Tigard, Oregon 97223

Responsibility:

The storm drainage facilities will be maintained by the owner's maintenance staff.

Description:

This site is approximately 5.26 acres of building, paving, and landscape. Storm runoff is directed to a surface pond to provide detention for runoff flow control. Outflow is limited by a control manhole. Runoff treatment for the paving is provided by a treatment catch basin and a treatment manhole, each containing a series of cartridges. Runoff treatment for the building roof is provided by a vegetated swale west of the building. The site facilities discharge to a public conveyance system located at the along the site frontage at Myslony Street.

Inspection and Maintenance Schedule:

The system shall be inspected and maintained monthly and within 48 hours after each major storm event. For this O \& M plan, a major storm event is defined as greater than 0.5 inches of rainfall in 24 hours. All components of storm system must be maintained frequently or they will cease to function effectively. The owner shall keep a log, recording inspection dates, observations, and maintenance activities. Receipts shall be saved when maintenance is performed and there is a record of expense.

Four S Properties
Stormwater Facility Maintenance and Operation Manual

Inspection and Maintenance Schedule:

The following items shall be inspected and maintained as stated:

Detention System:

- Check condition of pond biannually.
- Sediment shall be removed from pond bottom pipes biannually.
- Quarterly inspection for clogging shall be performed.

Flow Control Structure and Piping:

- Check condition of control structure and internal components annually.
- Sediment shall be removed from around overflow riser and from pipes biannually.
- Quarterly inspection for clogging shall be performed.

Contech Treatment System:

- Check condition of structure, internal components, and piping biannually. Contact Contech, Inc. for inspection and maintenance of treatment cartridges.
- Sediment shall be removed from inlet sump biannually.
- Quarterly inspection for clogging shall be performed.

Vegetated Swale:

- Check condition of outlet structure, internal components, and piping biannually.
- Sediment shall be removed from inlet sump biannually.
- Maintain plantings as required by Clean Water Services.
- Quarterly inspection for clogging shall be performed.

Source Control:

Source control measures prevent pollutants form mixing with stormwater. Typical nonstructural control measures include raking and removing leaves and limited and controlled application of pesticides, herbicides, and fertilizers.

Spill Prevention:

Spill prevention measures shall be exercised when handling substances that can contaminate stormwater. Virtually all sites present dangers from spills. If hazardous substances are spilled within the vicinity of the stormwater facilities, identify the spill and provide appropriate cleanup and notify appropriate authorities.

Insects and Rodents:

- Insects and rodents shall not be harbored in any part of the storm system.
- Pest control measures shall be taken when insects or rodents are found to be present. Standing water and food sources shall be prevented.

Four S Properties
Stormwater Facility Maintenance and Operation Manual

- If sprays are considered, a mosquito larvicide such as Bacillus thurendensis or Altoside formulations can be applied only if absolutely necessary and shall not be used where it will enter the groundwater or come into contact with any standing water. Sprays shall be applied only by licensed individuals or contractors.
- Holes in the ground located in and around the storm system shall be filled.
- Outfalls draining into vegetated swales shall be inspected and cleaned regularly to ensure no rodent activity, which can clog or decrease the efficiency of the storm system.

Access:

Access shall be maintained for all facilities so operation and maintenance can be performed as regularly scheduled.

October 26, 2018

Skip D.F. Stanaway AIA
A \& I Distributors-Portland

Re: Four S Warehouse Facility
12200 SW Myslony St.
Tualatin, OR 97062

Dear Skip,

Thank you, for sending us the final site plans for this proposed renovation in Tualatin.

My Company: Republic Services of Clackamas and Washington Counties has the franchise agreement to service this area with the City of Tualatin. We will provide complete commercial waste removal and recycling services as needed on a weekly basis for this location

The design location of the enclosure sent 10/25/2018 repositioned to the East to allow for greater separation between enclosure and any obstacles to the West will allow access for our trucks.

The enclosure design dimensions sent 10/23/2018 which includes 10^{\prime} wide post to post ID and 10' depth, and gate swing radius are adequate for our trucks to service containers.

As we discussed, a backstop positioned at the rear of each enclosure to protect the back wall should be installed.

Thanks Skip for your help and concerns for our services prior to this project being developed.

Sincerely,

[^0]: ${ }^{1}$ Institute of Transportation Engineers (ITE), Trip Generation Manual, 10 ${ }^{\text {th }}$ Edition, 2017.

[^1]: 2 American Association of State Highway and Transportation Officials (AASHTO), A Policy on Geometric Design of Highways and Streets, 6 ${ }^{\text {th }}$ Edition, 2011.

[^2]: ${ }^{3}$ Transportation Research Board, Highway Capacity Manual, 6 ${ }^{\text {th }}$ Edition, 2016.

[^3]: ${ }^{1}$ Institute of Transportation Engineers (ITE), Trip Generation Manual, 10 ${ }^{\text {th }}$ Edition, 2017.

[^4]: ${ }^{2}$ Transportation Research Board, Highway Capacity Manual, 2000.

[^5]: ${ }^{3}$ American Association of State Highway and Transportation Officials (AASHTO), A Policy on Geometric Design of Highways and Streets, $6^{\text {th }}$ Edition, 2011.

[^6]: Four S Corp Distribution Center 06/04/2018 2029 Buildout Conditions - PM Peak Hour (737,000 sf with TWLTL)
 Synchro 10 Report DS

[^7]: NOTES:

 1. Max Input Amps is the highest of starting, operating, or open circuit currents
 2. Lumen values for LED Modules vary according to the distribution type
 3. System Watts includes the source watts and all driver components.
 4. Fuse value should be sufficient to protect all wiring components. For electronic driver and LED component protection, use surge suppressor supplied with luminaire. Note: Surge suppressors are considered a perishable device
 5. L70(10K) -TM-21 $6 x$ rule applied

 WARNING: All fixtures must be installed in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.

[^8]: $\stackrel{\square}{\square}$

 - Approximate Net Weight: 17 lbs (7.71 kgs)
 - Effective Projected Area (EPA): $0.42 \mathrm{sq} \mathrm{ft} \mathrm{max} \mathrm{(0.04} \mathrm{sq}. \mathrm{m)}$

